风姿如水(274363115) 09:36:34<BR>已知1≤a+b≤2000<BR>求6*a+3*b的最小值<BR> <BR> DeMoN.流浪(76199093) 09:37:17<BR>如果碟数不够多<BR>可以因为满意度是1就让别人满意度为9的没的借吗? <BR>那时花开(382887192) 09:38:34<BR>那么想就太复杂了,要从整体上建立模型,不是从每一个分析 <BR>天义(178611327) 09:38:55<BR>不一定每个人都要3张 <BR>云*明*韵(514413179) 09:39:18<BR>三张是一起的啊 <BR>天义(178611327) 09:39:51<BR>那每次都要借3张了? <BR>茶杯里的叶子(392359808) 09:39:53<BR>有思路吗? <BR> DeMoN.流浪(76199093) 09:40:03<BR>如果这样<BR>我手工操作把每个满意度是123的科目全选出来不就完了 <BR>天义(178611327) 09:40:35<BR>那样不行的,有些DVD的数量太少了 <BR> DeMoN.流浪(76199093) 09:40:37<BR>剩下没有的既然可以不给三张<BR>就随便给俩张了<BR> <BR>茶杯里的叶子(392359808) 09:40:40<BR>但是不是要考虑周期循环吗? <BR> DeMoN.流浪(76199093) 09:40:41<BR>可以这样吗? <BR>云*明*韵(514413179) 09:40:43<BR>是啊,我这样认为的,也不知正确不正确 <BR> DeMoN.流浪(76199093) 09:41:41<BR>第二题如果考虑到周期循环问题<BR>就不是借一次的问题了 <BR>茶杯里的叶子(392359808) 09:42:25<BR>但是如果假设15天一个循环那不是太直观了吗?》 <BR> DeMoN.流浪(76199093) 09:42:28<BR>应该只是为分配一次从而达到顾客最大的满意度吧 <BR>流水汤汤(109270269) 09:42:52<BR>本来商家就有很多的可能的啊 <BR> DeMoN.流浪(76199093) 09:42:55<BR>只有通过最极端的条件才能看清楚模型的雏形 <BR> 萧枫(271557336) 09:44:03<BR>就是每次都让顾客满意度最大 <BR>茶杯里的叶子(392359808) 09:43:17<BR>那你们算出但是<BR>我们是3000 <BR>茶杯里的叶子(392359808) 09:44:33<BR>怎么没有人说话啊 <BR> DeMoN.流浪(76199093) 09:44:42<BR>可以因为让A选到满意度为123的DVD<BR>就让B一张都选不到? <BR> DeMoN.流浪(76199093) 09:44:54<BR>或者让B选到的是678的? <BR>茶杯里的叶子(392359808) 09:45:23<BR>为什么要这样分?<BR>依据 <BR>那时花开(382887192) 09:45:48<BR>那不行,应该从整体最小 <BR> DeMoN.流浪(76199093) 09:46:17<BR>如果让一个顾客满意度最大<BR>肯定会剥夺其他顾客的满意度<BR>存在调配问题 <BR>茶杯里的叶子(392359808) 09:46:27<BR>就是 <BR> DeMoN.流浪(76199093) 09:46:51<BR>肯定不是纯粹从123出手的 <BR> DeMoN.流浪(76199093) 09:47:14<BR>我觉得可能会是1-5之间找些中间值才对 <BR>茶杯里的叶子(392359808) 09:47:25<BR>那对有的人不公平 <BR> DeMoN.流浪(76199093) 09:48:07<BR>如果能把大家的满意度都控制在1-5或者更多些1-7之间的话 <BR>茶杯里的叶子(392359808) 09:48:28<BR>那就算平均值 <BR>天义(178611327) 09:49:05<BR>应该要假设每个人每月必须借两次才行啊,那每人每月就能看<BR>123456这6张DVD,满意度就可以高一些 <BR> DeMoN.流浪(76199093) 09:49:11<BR>好多地方都有你的身影啊 <BR>茶杯里的叶子(392359808) 09:49:24<BR>就是啊 <BR> DeMoN.流浪(76199093) 09:50:00<BR>60%的顾客好象不能是制定的吧? <BR>茶杯里的叶子(392359808) 09:50:05<BR>那借一次的怎么办? <BR>天义(178611327) 09:50:12<BR>其实有些人第一次借456,第二次借123也行 <BR> DeMoN.流浪(76199093) 09:50:30<BR>就是说不能说你把前6张碟制定寄给60%的人 <BR>天义(178611327) 09:50:30<BR>60%那是第一问的 <BR> DeMoN.流浪(76199093) 09:51:02<BR>第二题应该不涉及归还问题吧? <BR> DeMoN.流浪(76199093) 09:51:12<BR>如果涉及...我就没头绪了 <BR>茶杯里的叶子(392359808) 09:51:19<BR>我们只有满足40%的才能满足60%的<BR>因为60%的有两次机会 <BR>天义(178611327) 09:51:46<BR>假设每人每月借2次,60%和40%的是第一问的 <BR> DeMoN.流浪(76199093) 09:51:49<BR>按理是这样<BR>找不到最优的<BR>只好从次优出发 <BR>天义(178611327) 09:52:07<BR>大部分人满意就行了啊 <BR>云*明*韵(514413179) 09:52:16<BR>是啊 <BR>茶杯里的叶子(392359808) 09:52:17<BR>那不行啊 <BR>天义(178611327) 09:52:20<BR>???????? <BR>云*明*韵(514413179) 09:52:51<BR>其实这个问题就只是一个大概 <BR> DeMoN.流浪(76199093) 09:54:14<BR>按道理应该是一次分配问题吧? <BR>茶杯里的叶子(392359808) 09:54:23<BR>大概<BR>那还用算干纳 <BR> DeMoN.流浪(76199093) 09:54:40<BR>问题没有涉及一个月或者是俩个月的时间问题 <BR>茶杯里的叶子(392359808) 09:54:58<BR>那为什么要问 <BR> DeMoN.流浪(76199093) 09:55:43<BR>问什么? <BR>茶杯里的叶子(392359808) 09:56:05<BR>问我们一个月和三个月的分配啊 <BR> DeMoN.流浪(76199093) 09:57:59<BR>那是第一题<BR>刚才说的不是第二题吗? <BR>茶杯里的叶子(392359808) 09:58:32<BR>我知道<BR>我只是不知道他们为什么要问这个 <BR>425576540(425576540) 10:00:33<BR>你们做成怎样啊 <BR>天义(178611327) 10:02:41<BR>你们说说是不是每个会员都要借到他们感兴趣的? <BR>天义(178611327) 10:03:04<BR>包括8、9的? <BR>茶杯里的叶子(392359808) 10:03:04<BR>不是 <BR>柠檬(425576540) 10:03:09<BR>不一定哦 <BR>风姿如水(274363115) 10:04:57<BR>main()<BR>{static int M[100][20]={{0,0,2,0,0,0,9,1,5,7,0,0,8,0,3,6,0,0,4},<BR>{1,0,9,0,0,7,0,0,4,0,0,2,0,6,3,0,0,8,5,0},<BR>{0,6,0,0,0,7,0,0,0,0,0,4,1,3,8,0,2,0,9,5},<BR>{0,0,0,0,4,0,7,6,0,0,3,1,0,5,9,0,8,0,2,0},<BR>{5,0,0,0,0,4,7,0,0,9,0,0,3,0,2,8,6,0,1,0},<BR>{4,0,6,0,0,8,0,5,9,0,0,3,0,0,1,2,0,0,7,0},<BR>{0,0,6,3,0,0,1,2,8,0,4,0,0,0,0,5,0,0,9,7},<BR>{3,0,0,0,0,0,0,8,0,0,7,9,1,2,0,6,0,5,4,0},<BR>{0,3,2,9,0,0,7,5,0,6,0,0,0,0,1,4,0,8,0,0},<BR>{7,0,0,0,0,0,0,6,0,1,4,2,0,0,0,0,5,3,0,0},<BR>{0,0,4,0,0,0,0,1,0,2,8,0,3,0,5,0,0,6,7,0},<BR>{0,8,0,0,4,0,7,0,0,6,2,0,5,3,9,0,0,0,1,0},<BR>{8,0,0,0,0,5,0,0,2,0,0,9,3,0,6,0,4,0,1,7},<BR>{7,0,9,0,0,3,0,0,0,0,0,4,6,0,0,1,2,5,8,0},<BR>{4,0,0,0,0,0,1,0,2,7,6,5,0,0,9,0,3,0,0,8},<BR>{3,0,9,0,0,0,6,1,2,0,4,0,0,0,0,0,7,8,5,0},<BR>{2,7,0,1,0,0,5,4,0,0,0,0,0,8,0,0,3,6,0,0},<BR>{7,5,0,0,0,0,1,0,0,0,3,0,9,0,0,4,8,2,0,6},<BR>{0,5,0,0,0,7,0,3,0,0,8,0,0,0,2,6,1,0,4,0},<BR>{0,0,9,0,4,2,7,0,1,8,0,6,0,0,0,0,0,0,5,3},<BR>{0,0,7,4,0,5,0,0,3,8,0,0,2,0,1,6,0,0,0,0},<BR>{0,4,2,0,6,0,1,0,0,0,3,5,0,7,0,8,0,0,0,0},<BR>{4,3,0,0,0,0,0,0,7,9,5,1,2,0,8,0,0,6,0,0},<BR>{5,0,9,0,0,0,6,3,0,0,1,0,2,0,7,0,8,0,4,0},<BR>{6,5,0,0,0,0,0,0,0,8,0,0,7,0,2,4,1,9,3,0},<BR>{6,8,1,0,0,5,0,3,0,7,0,0,9,0,0,2,0,4,0,0},<BR>{7,1,0,0,8,3,5,0,0,2,0,4,0,9,6,0,0,0,0,0},<BR>{0,0,0,7,2,0,3,6,1,4,0,0,5,0,8,9,0,0,0,0},<BR>{0,7,0,4,5,0,0,1,0,8,0,6,2,0,0,0,0,0,0,3},<BR>{0,0,1,0,0,0,0,4,3,7,8,0,0,6,0,5,2,0,0,0},<BR>{0,0,0,0,0,5,3,6,2,4,0,0,8,7,0,1,0,0,0,9},<BR>{7,0,2,3,6,0,0,0,5,8,0,0,4,0,0,1,0,0,0,0},<BR>{0,1,0,0,0,0,0,0,8,0,5,7,4,0,0,0,0,6,3,2},<BR>{3,0,0,0,0,0,8,0,4,5,6,0,1,7,0,0,9,0,0,2},<BR>{0,5,4,0,8,0,6,0,0,0,0,0,7,0,2,0,3,0,0,1},<BR>{0,0,4,0,0,0,8,5,1,0,2,0,0,0,0,6,7,0,3,0},<BR>{3,0,4,8,0,5,0,0,0,0,2,1,6,0,0,7,0,0,0,0},<BR>{0,4,2,0,0,0,0,5,9,7,1,0,0,3,0,0,0,0,8,6},<BR>{0,0,0,0,0,0,6,0,1,4,0,5,0,7,2,0,8,3,0,0},<BR>{6,5,2,4,9,0,0,1,0,0,0,0,0,0,7,0,8,3,0,0},<BR>{6,4,5,0,0,0,0,8,0,2,0,7,0,0,9,0,0,1,3,0},<BR>{4,0,0,3,0,0,5,0,0,0,0,0,0,2,1,8,7,0,0,6},<BR>{9,0,0,0,0,0,0,3,4,8,0,6,0,7,1,0,0,5,2,0},<BR>{3,0,0,2,8,5,0,0,0,0,0,9,0,4,0,0,6,7,1,0},<BR>{4,0,0,0,3,2,8,0,9,0,7,0,0,0,5,0,6,0,1,0},<BR>{4,0,9,6,0,7,0,3,5,0,0,2,0,1,0,0,8,0,0,0},<BR>{0,0,0,0,2,1,0,0,0,0,3,0,0,8,7,0,6,4,0,5},<BR>{0,0,5,0,0,6,1,0,3,0,0,0,0,2,0,0,8,7,0,4},<BR>{7,4,6,0,3,0,8,0,0,5,0,0,0,2,0,0,0,0,1,0},<BR>{1,0,0,5,2,3,0,0,0,0,0,0,6,0,0,4,0,7,0,0},<BR>{9,0,2,0,0,6,7,0,0,0,5,0,0,4,0,8,1,3,0,0},<BR>{1,0,0,2,4,0,0,8,0,0,7,0,0,0,3,0,5,0,0,6},<BR>{7,0,0,0,0,0,4,6,0,2,0,5,0,8,3,0,0,0,1,0},<BR>{0,3,0,0,4,0,2,0,0,7,6,1,8,0,0,9,5,0,0,0},<BR>{1,0,0,2,6,0,0,3,0,0,0,0,0,0,5,4,0,7,9,8},<BR>{0,8,1,6,0,0,0,5,0,2,0,0,0,0,7,0,0,3,4,0},<BR>{0,5,0,0,2,0,1,3,0,4,6,9,0,0,0,0,0,8,7,0},<BR>{9,8,0,0,0,0,0,0,6,0,0,0,2,3,0,4,1,7,0,5},<BR>{0,0,0,0,7,2,3,0,0,0,8,0,0,5,0,6,9,1,4,0},<BR>{2,7,0,0,0,0,3,0,5,1,9,0,4,0,8,0,0,6,0,0},<BR>{0,0,9,2,0,0,6,5,0,0,0,3,0,7,4,8,1,0,0,0},<BR>{6,2,0,1,9,0,0,0,0,0,7,3,0,8,5,0,0,4,0,0},<BR>{6,0,2,0,0,0,0,0,8,0,3,0,4,7,5,0,0,1,0,0},<BR>{7,0,8,2,0,1,0,3,0,0,0,0,5,0,6,0,0,9,0,4},<BR>{0,0,0,0,0,0,0,0,1,0,3,4,5,0,7,0,0,6,0,2},<BR>{4,5,0,2,0,0,6,8,3,1,7,0,0,0,9,0,0,0,0,0},<BR>{0,0,6,0,1,7,0,0,0,3,0,0,0,0,5,0,0,2,8,4},<BR>{9,0,0,1,0,3,7,0,4,6,0,0,2,0,8,5,0,0,0,0},<BR>{3,8,0,0,0,9,0,0,0,2,7,0,5,0,0,4,0,6,1,0},<BR>{1,0,3,6,0,8,4,5,0,2,0,9,0,0,0,0,0,7,0,0},<BR>{0,0,0,7,3,0,0,0,2,8,5,0,0,6,0,0,4,1,0,0},<BR>{0,0,0,0,0,3,0,6,9,1,0,2,0,4,0,8,0,0,7,5},<BR>{0,4,0,0,0,0,0,0,8,1,2,0,0,5,9,0,3,7,0,6},<BR>{0,0,0,1,0,0,0,6,0,0,3,8,0,0,2,0,4,0,7,5},<BR>{6,0,4,0,8,0,0,0,3,7,0,5,1,0,0,2,0,0,9,0},<BR>{2,3,1,0,9,0,0,8,0,7,4,0,5,0,0,0,0,0,6,0},<BR>{0,0,4,0,8,7,0,0,0,2,0,0,6,0,1,0,0,3,0,5},<BR>{8,2,3,0,0,0,0,4,0,0,0,0,0,7,9,1,0,6,5,0},<BR>{0,0,0,0,5,0,1,8,0,0,0,9,6,4,0,0,7,0,2,3},<BR>{0,0,8,7,0,2,0,1,0,0,0,0,3,6,5,4,0,9,0,0},<BR>{0,9,0,6,0,2,0,0,0,7,4,1,0,3,5,0,0,0,8,0},<BR>{9,0,0,0,0,0,3,2,0,0,7,4,1,5,6,8,0,0,0,0},<BR>{4,0,2,0,6,1,0,5,9,3,0,0,0,0,0,8,0,0,0,7},<BR>{4,0,7,0,0,3,0,2,0,5,0,0,8,0,6,1,0,0,0,0},<BR>{0,0,0,4,0,0,1,0,0,6,5,0,0,0,8,0,2,0,3,7},<BR>{0,0,1,6,0,4,0,7,0,8,5,0,0,5,9,0,0,3,0,0},<BR>{0,0,0,0,1,3,0,0,6,5,8,2,9,0,0,4,0,0,7,0},<BR>{0,9,0,2,1,0,0,0,0,6,0,8,0,4,7,0,3,0,5,0},<BR>{3,0,8,0,1,2,0,0,0,7,9,6,5,4,0,0,0,0,0,0},<BR>{0,6,5,8,0,3,0,7,0,0,4,2,9,0,1,0,0,0,0,0},<BR>{0,0,2,8,5,0,6,0,1,0,3,0,0,7,0,9,4,0,0,0},<BR>{8,7,0,0,0,6,0,5,0,0,0,2,0,0,1,4,3,0,0,0},<BR>{3,8,6,0,4,1,0,0,2,0,0,7,0,9,0,0,5,0,0,0},<BR>{3,0,6,2,0,4,7,8,0,1,0,0,9,5,0,0,0,0,0,0},<BR>{0,0,0,6,5,0,1,7,2,0,3,0,8,0,0,0,0,4,9.0},<BR>{0,9,6,0,0,4,0,7,1,0,0,0,0,0,5,0,3,0,2,8},<BR>{7,1,0,0,8,9,0,0,6,0,4,2,0,3,0,0,0,0,0,5},<BR>{1,0,0,0,0,2,7,0,0,4,0,0,0,6,0,8,0,3,5,0},<BR>{0,1,4,0,6,0,5,0,9,0,8,0,2,3,0,0,0,7,0,0},<BR>{0,0,0,5,4,0,0,7,1,6,0,0,0,0,0,3,8,2,0,0}}<BR>int a=0;<BR>int b=0;<BR>int c=0;<BR>int d=0;<BR>int e=0;<BR>int f=0;<BR>int g=0;<BR>int h=0;<BR>int i=0;<BR>int j=0;<BR>int k=0;<BR>int l=0;<BR>int m=0;<BR>int n=0;<BR>int o=0;<BR>int p=0;<BR>int q=0;<BR>int r=0;<BR>int s=0;<BR>int t=0;<BR>int I,J,min=0;<BR>for(I=1;I<=100;I++)<BR>{for(J=1;J<=20;J++)<BR>if(M[I][J]=1&a<=8&b<=22&c<=10&d<=8&e<=40&f<=40&h<=1&i<=8&j<=15&k<=19&l<=20&m<=10&n<=2&o<=5&p<=8&q=30&r=10&s=8&t=38)<BR>{min=min+1;printf("(%d,%d)",I,J);<BR>switch(J)<BR>{case'0':a=a+1;break;<BR> case'1':b=b+1;break;<BR> case'2':c=c+1;break;<BR> case'3':d=d+1;break;<BR> case'4':e=e+1;break;<BR> case'5':f=f+1;break;<BR> case'6':g=g+1;break;<BR> case'7':h=h+1;break;<BR> case'8':i=i+1;break;<BR> case'9':j=j+1;break;<BR> case'10':k=k+1;break;<BR> case'11':l=l+1;break;<BR> case'12':m=m+1;break;<BR> case'13':n=n+1;break;<BR> case'14'=o+1;break;<BR> case'15':p=p+1;break;<BR> case'16':q=q+1;break;<BR> case'17':r=r+1;break;<BR> case'18':s=s+1;break;<BR> case'19':t=t+1;break;<BR> }}<BR>elseif(M[I][J]=2&a<=8&b<=22&c<=10&d<=8&e<=40&f<=40&h<=1&i<=8&j<=15&k<=19&l<=20&m<=10&n<=2&o<=5&p<=8&q=30&r=10&s=8&t=38)<BR>{min=min+1;printf("(%d,%d)",I,J);<BR>switch(J)<BR>{case'0':a=a+1;break;<BR> case'1':b=b+1;break;<BR> case'2':c=c+1;break;<BR> case'3':d=d+1;break;<BR> case'4':e=e+1;break;<BR> case'5':f=f+1;break;<BR> case'6':g=g+1;break;<BR> case'7':h=h+1;break;<BR> case'8':i=i+1;break;<BR> case'9':j=j+1;break;<BR> case'10':k=k+1;break;<BR> case'11':l=l+1;break;<BR> case'12':m=m+1;break;<BR> case'13':n=n+1;break;<BR> case'14'=o+1;break;<BR> case'15':p=p+1;break;<BR> case'16':q=q+1;break;<BR> case'17':r=r+1;break;<BR> case'18':s=s+1;break;<BR> case'19':t=t+1;break;<BR> }}<BR>elseif(M[I][J]=3&a<=8&b<=22&c<=10&d<=8&e<=40&f<=40&h<=1&i<=8&j<=15&k<=19&l<=20&m<=10&n<=2&o<=5&p<=8&q=30&r=10&s=8&t=38)<BR>{min=min+1;printf("(%d,%d)",I,J);<BR>switch(J)<BR>{case'0':a=a+1;break;<BR> case'1':b=b+1;break;<BR> case'2':c=c+1;break;<BR> case'3':d=d+1;break;<BR> case'4':e=e+1;break;<BR> case'5':f=f+1;break;<BR> case'6':g=g+1;break;<BR> case'7':h=h+1;break;<BR> case'8':i=i+1;break;<BR> case'9':j=j+1;break;<BR> case'10':k=k+1;break;<BR> case'11':l=l+1;break;<BR> case'12':m=m+1;break;<BR> case'13':n=n+1;break;<BR> case'14'=o+1;break;<BR> case'15':p=p+1;break;<BR> case'16':q=q+1;break;<BR> case'17':r=r+1;break;<BR> case'18':s=s+1;break;<BR> case'19':t=t+1;break;<BR> }}<BR>elseif(M[I][J]=4&a<=8&b<=22&c<=10&d<=8&e<=40&f<=40&h<=1&i<=8&j<=15&k<=19&l<=20&m<=10&n<=2&o<=5&p<=8&q=30&r=10&s=8&t=38)<BR>{min=min+1;printf("(%d,%d)",I,J);<BR>switch(J)<BR>{case'0':a=a+1;break;<BR> case'1':b=b+1;break;<BR> case'2':c=c+1;break;<BR> case'3':d=d+1;break;<BR> case'4':e=e+1;break;<BR> case'5':f=f+1;break;<BR> case'6':g=g+1;break;<BR> case'7':h=h+1;break;<BR> case'8':i=i+1;break;<BR> case' |