<>好象是关于混沌方面的,刚开始接触,能给一些介绍和资料吗?</P>
<><a href="mailtsoftcao1860@163.com" target="_blank" >softcao1860@163.com</A></P>
< ><FONT face="Times New Roman"> </FONT>研究二次迭代Xn+1=rXn(1-Xn)的性质,其中<B><FONT face="Times New Roman">0<<I>r</I></FONT></B><B>£</B><B><FONT face="Times New Roman">4</FONT></B><B>,</B><B><FONT face="Times New Roman">0</FONT></B><B>£</B><B><I><FONT face="Times New Roman">x<SUB>n</SUB></FONT></I></B><B>£</B><B><FONT face="Times New Roman">1</FONT></B>。<p></p></P>
<P >③<FONT face="Times New Roman"> </FONT>以<FONT face="Times New Roman"><I>r</I> </FONT>为横轴,<I><FONT face="Times New Roman">x<SUB>n </SUB></FONT></I>为<B>轴建</B>立坐标系,取<FONT face="Times New Roman"><I>x</I><SUB>0</SUB> =0.3</FONT>,<I><FONT face="Times New Roman">r</FONT></I>从<FONT face="Times New Roman">1</FONT>到<FONT face="Times New Roman">4</FONT>递增幅度为<B><FONT face="Times New Roman">0.01</FONT></B>,对于不同的<I><FONT face="Times New Roman">r</FONT></I>值,迭代Xn+1=rXn(1-Xn)<B><FONT face="Times New Roman">150</FONT></B><B>次</B>,<B>抛弃</B>前<B><FONT face="Times New Roman">50</FONT></B><B>个</B>值<FONT face="Times New Roman"><B><I>x</I></B><B><SUB>0</SUB></B><B>, <I>x</I><SUB>1</SUB>, </B></FONT><B>…</B><B><FONT face="Times New Roman">, <I>x</I><SUB>50</SUB></FONT></B><B>,</B>将后<FONT face="Times New Roman">100</FONT>个值<FONT face="Times New Roman"><B><I>x</I></B><B><SUB>51</SUB></B><B>, <I>x</I><SUB>52</SUB>, </B></FONT><B>…</B><B><FONT face="Times New Roman">, <I>x</I><SUB>150</SUB></FONT></B>,打印在<I><FONT face="Times New Roman">r</FONT></I>的铅直线上,转入下一个<FONT face="Times New Roman"><I>r</I> </FONT>值,得到一个图<B>(Feigenbaumn</B><B>图)</B>,你会发现什么现象,是否可以解释①和②中的问题。<p></p></P>
<P > </P>