有约束的多元函数最小值
非线性有约束的多元函数的标准形式为:
min f(x)
sub.to C(x)<=0
Ceq(x)=0
A*x<=b
Aeq*x=beq
lb<=x<=ub
其中:x、b、beq、lb、ub是向量,A、Aeq为矩阵,C(x)、Ceq(x)是返回向量的函数,f(x)为目标函数,f(x)、C(x)、Ceq(x)可以是非线性函数。
在MATLAB5.x中,它的求解由函数constr实现。
函数 fmincon
格式 x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
[x,fval] = fmincon(…)
[x,fval,exitflag] = fmincon(…)
[x,fval,exitflag,output] = fmincon(…)
[x,fval,exitflag,output,lambda] = fmincon(…)
[x,fval,exitflag,output,lambda,grad] = fmincon(…)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(…)
参数说明:fun为目标函数,它可用前面的方法定义;
x0为初始值;
A、b满足线性不等式约束 ,若没有不等式约束,则取A=[ ],b=[ ];
Aeq、beq满足等式约束 ,若没有,则取Aeq=[ ],beq=[ ];
lb、ub满足 ,若没有界,可设lb=[ ],ub=[ ];
nonlcon的作用是通过接受的向量x来计算非线性不等约束 和等式约束 分别在x处的估计C和Ceq,通过指定函数柄来使用,如:>>x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon),先建立非线性约束函数,并保存为mycon.m:function [C,Ceq] = mycon(x)
C = … % 计算x处的非线性不等约束 的函数值。
Ceq = … % 计算x处的非线性等式约束 的函数值。
lambda是Lagrange乘子,它体现哪一个约束有效。
output输出优化信息;
grad表示目标函数在x处的梯度;
hessian表示目标函数在x处的Hessiab值。
例5-6 求下面问题在初始点(0,1)处的最优解
min x1^2+x2^2-x1*x2-2*x1-5*x2
sub.to -(x1-1)^2+x2>=0
2*x1-3*x2+6>=0
解:约束条件的标准形式为
sub.to (x1-1)^2-x2<=0
-2*x1+3*x2-6<=0
先在MATLAB编辑器中建立非线性约束函数文件:
function [c, ceq]=mycon (x)
c=(x(1)-1)^2-x(2);
ceq=[ ]; %无等式约束
然后,在命令窗口键入如下命令或建立M文件:
>>fun='x(1)^2+x(2)^2-x(1)*x(2)-2*x(1)-5*x(2)'; %目标函数
>>x0=[0 1];
>>A=[-2 3]; %线性不等式约束
>>b=6;
>>Aeq=[ ]; %无线性等式约束
>>beq=[ ];
>>lb=[ ]; %x没有下、上界
>>ub=[ ];
>>[x,fval,exitflag,output,lambda,grad,hessian]
=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,@mycon)
则结果为
x =
3 4
fval =
-13
exitflag = %解收敛
1
output =
iterations: 2
funcCount: 9
stepsize: 1
algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'
firstorderopt: [ ]
cgiterations: [ ]
lambda =
lower: [2x1 double] %x下界有效情况,通过lambda.lower可查看。
upper: [2x1 double] %x上界有效情况,为0表示约束无效。
eqlin: [0x1 double] %线性等式约束有效情况,不为0表示约束有效。
eqnonlin: [0x1 double] %非线性等式约束有效情况。
ineqlin: 2.5081e-008 %线性不等式约束有效情况。
ineqnonlin: 6.1938e-008 %非线性不等式约束有效情况。
grad = %目标函数在最小值点的梯度
1.0e-006 *
-0.1776
0
hessian = %目标函数在最小值点的Hessian值
1.0000 -0.0000
-0.0000 1.0000
例5-7 求下面问题在初始点x=(10, 10, 10)处的最优解。
Min f(x)=-x1*x2*x3
Sub.to 0<=x1+2*x2+2*x3<=72
解:约束条件的标准形式为
sub.to -1*x1-2*x2-2*x3<=0
x1+2*x2+2*x3<=72
>> fun= '-x(1)*x(2)*x(3)';
>> x0=[10,10,10];
>> A=[-1 -2 -2;1 2 2];
>> b=[0;72];
>> [x,fval]=fmincon(fun,x0,A,b)
结果为:
x =
24.0000 12.0000 12.0000
fval =
-3456
|