|
<>请帮我做一个题,用lingo或matlab做哟,把代码贴出来,谢谢</P>
<>题目是:</P>
<>1.某糖果厂用原料A,B,C,加工成三种不同牌号的糖果甲,乙,丙.已知各种糖果中A,B,C的含量,原料成本,各种原料每个月的的限制用量,三种牌号糖果的单位加工费及售价如下表所示</P>
<P> 甲 乙 丙 原料成本价/元/KG 每月限制用量/KG</P>
<P> A >=60% >=15% 2.00 2000</P>
<P> B 1.50 2500</P>
<P> C <=20% <=60% <=50% 1.00 1200</P>
<P>加工费/元/kg 0.5 0.40 0.30</P>
<P>售价/元/kg 3.40 2.85 2.25</P>
<P>问该厂每月生产这三种牌号糖果各多少kg,使得利润最大?</P>
<P><FONT color=#ee1111>2题: 通过Matlab中的help命令,找到nlinfit命令及相关命令格式的英文解释,并翻译成中文</FONT></P>
<P>nlinfit Nonlinear least-squares data fitting by the Gauss-Newton method Syntaxbeta = nlinfit(X,y,FUN,beta0)<br>[beta,r,J] = nlinfit(X,y,FUN,beta0)<br>Descriptionbeta = nlinfit(X,y,FUN,beta0) estimates the coefficients of a nonlinear function using least squares. y is a vector of response (dependent variable) values. Typically, X is a design matrix of predictor (independent variable) values, with one row for each value in y. However, X can be any array that FUN can accept. FUN is a function of the form yhat = myfun(beta,X)<br>where beta is a coefficient vector, and X is the design matrix. FUN returns a vector yhat of fitted y values. beta0 is a vector containing initial values for the coefficients. [beta,r,J] = nlinfit(X,y,FUN,beta0) returns the fitted coefficients, beta, the residuals, r, and the Jacobian, J. You can use these outputs with nlpredci to produce error estimates on predictions, and with nlparci to produce error estimates on the estimated coefficients. Note nlintool provides a GUI for performing nonlinear fits and computing confidence intervals. ExampleFind the coefficients that best fit the data in reaction.mat. The chemistry behind this data set deals with reaction kinetics as a function of the partial pressure of three chemical reactants: hydrogen, n-pentane, and isopentane. The hougen function uses the Hougen-Watson model for reaction kinetics to return the predicted values of the reaction rate. load reaction<br>betafit = nlinfit(reactants,rate,@hougen,beta)<br>betafit =<br> 1.2526<br> 0.0628<br> 0.0400<br> 0.1124<br> 1.1914</P>
[此贴子已经被作者于2005-12-20 14:27:44编辑过]
|
|