|
楼主 |
发表于 2005-1-19 22:38:13
|
显示全部楼层
<>
//奇异值分解法求广义逆
//本函数返回值小于0表示在奇异值分解过程,
//中迭代值超过了60次还未满足精度要求.
//返回值大于0表示正常返回。
//a-长度为m*n的数组,返回时其对角线依次给出奇异值,其余元素为0
//m-矩阵的行数
//n-矩阵的列数
//aa-长度为n*m的数组,返回式存放A的广义逆
//eps-精度要求
//u-长度为m*m的数组,返回时存放奇异值分解的左奇异量U
//v-长度为n*n的数组,返回时存放奇异值分解的左奇异量V
//ka-整型变量,其值为max(n,m)+1
//调用函数:dluav()
int dginv(double a[],int m,int n,double aa[],double eps,double u[],double v[],int ka)
{
int i,j,k,l,t,p,q,f;
i=dluav(a,m,n,u,v,eps,ka);
if (i<0)
{
return(-1);
}
j=n;
if (m<n)
{
j=m;
}
j=j-1;
k=0;
while ((k<=j)&&(a[k*n+k]!=0.0))
{
k=k+1;
}
k=k-1;
for (i=0; i<=n-1; i++)
{
for (j=0; j<=m-1; j++)
{
t=i*m+j;
aa[t]=0.0;
for (l=0; l<=k; l++)
{
f=l*n+i;
p=j*m+l;
q=l*n+l;
aa[t]=aa[t]+v[f]*u[p]/a[q];
}
}
}
return(1);
}
//实数矩阵的奇异值分解
//利用Householder变换及变形QR算法
//a-长度为m*n的数组,返回时其对角线依次给出奇异值,其余元素为0
//m-矩阵的行数
//n-矩阵的列数
//u-长度为m*m的数组,返回时存放奇异值分解的左奇异量U
//v-长度为n*n的数组,返回时存放奇异值分解的左奇异量V
//eps-精度要求
//ka-整型变量,其值为max(n,m)+1
//调用函数:dluav(),ppp(),sss()
static void ppp(double a[],double e[],double s[],double v[],int m,int n);
static void sss(double fg[2],double cs[2]);
int dluav(double a[],int m,int n,double u[],double v[],double eps,int ka)
{
int i,j,k,l,it,ll,kk,ix,iy,mm,nn,iz,m1,ks;
double d,dd,t,sm,sm1,em1,sk,ek,b,c,shh,fg[2],cs[2];
double *s,*e,*w;
s=malloc(ka*sizeof(double));
e=malloc(ka*sizeof(double));
w=malloc(ka*sizeof(double));
it=60;
k=n;
if (m-1<n)
{
k=m-1;
}
l=m;
if (n-2<m)
{
l=n-2;
}
if (l<0)
{
l=0;
}
ll=k;
if (l>k)
{
ll=l;
}
if (ll>=1)
{
for (kk=1; kk<=ll; kk++)
{
if (kk<=k)
{
d=0.0;
for (i=kk; i<=m; i++)
{
ix=(i-1)*n+kk-1;
d=d+a[ix]*a[ix];
}
s[kk-1]=sqrt(d);
if (s[kk-1]!=0.0)
{
ix=(kk-1)*n+kk-1;
if (a[ix]!=0.0)
{
s[kk-1]=fabs(s[kk-1]);
if (a[ix]<0.0)
{
s[kk-1]=-s[kk-1];
}
}
for (i=kk; i<=m; i++)
{
iy=(i-1)*n+kk-1;
a[iy]=a[iy]/s[kk-1];
}
a[ix]=1.0+a[ix];
}
s[kk-1]=-s[kk-1];
}
if (n>=kk+1)
{
for (j=kk+1; j<=n; j++)
{
if ((kk<=k)&&(s[kk-1]!=0.0))
{
d=0.0;
for (i=kk; i<=m; i++)
{
ix=(i-1)*n+kk-1;
iy=(i-1)*n+j-1;
d=d+a[ix]*a[iy];
}
d=-d/a[(kk-1)*n+kk-1];
for (i=kk; i<=m; i++)
{
ix=(i-1)*n+j-1;
iy=(i-1)*n+kk-1;
a[ix]=a[ix]+d*a[iy];
}
}
e[j-1]=a[(kk-1)*n+j-1];
}
}
if (kk<=k)
{
for (i=kk; i<=m; i++)
{
ix=(i-1)*m+kk-1;
iy=(i-1)*n+kk-1;
u[ix]=a[iy];
}
}
if (kk<=l)
{
d=0.0;
for (i=kk+1; i<=n; i++)
{
d=d+e[i-1]*e[i-1];
}
e[kk-1]=sqrt(d);
if (e[kk-1]!=0.0)
{
if (e[kk]!=0.0)
{
e[kk-1]=fabs(e[kk-1]);
if (e[kk]<0.0)
{
e[kk-1]=-e[kk-1];
}
}
for (i=kk+1; i<=n; i++)
{
e[i-1]=e[i-1]/e[kk-1];
}
e[kk]=1.0+e[kk];
}
e[kk-1]=-e[kk-1];
if ((kk+1<=m)&&(e[kk-1]!=0.0))
{
for (i=kk+1; i<=m; i++)
{
w[i-1]=0.0;
}
for (j=kk+1; j<=n; j++)
{
for (i=kk+1; i<=m; i++)
{
w[i-1]=w[i-1]+e[j-1]*a[(i-1)*n+j-1];
}
}
for (j=kk+1; j<=n; j++)
{
for (i=kk+1; i<=m; i++)
{
ix=(i-1)*n+j-1;
a[ix]=a[ix]-w[i-1]*e[j-1]/e[kk];
}
}
}
for (i=kk+1; i<=n; i++)
{
v[(i-1)*n+kk-1]=e[i-1];
}
}
}
}
mm=n;
if (m+1<n)
{
mm=m+1;
}
if (k<n)
{
s[k]=a[k*n+k];
}
if (m<mm)
{
s[mm-1]=0.0;
}
if (l+1<mm)
{
e[l]=a[l*n+mm-1];
}
e[mm-1]=0.0;
nn=m;
if (m>n)
{
nn=n;
}
if (nn>=k+1)
{
for (j=k+1; j<=nn; j++)
{
for (i=1; i<=m; i++)
{
u[(i-1)*m+j-1]=0.0;
}
u[(j-1)*m+j-1]=1.0;
}
}
if (k>=1)
{
for (ll=1; ll<=k; ll++)
{
kk=k-ll+1; iz=(kk-1)*m+kk-1;
if (s[kk-1]!=0.0)
{
if (nn>=kk+1)
{
for (j=kk+1; j<=nn; j++)
{
d=0.0;
for (i=kk; i<=m; i++)
{
ix=(i-1)*m+kk-1;
iy=(i-1)*m+j-1;
d=d+u[ix]*u[iy]/u[iz];
}
d=-d;
for (i=kk; i<=m; i++)
{
ix=(i-1)*m+j-1;
iy=(i-1)*m+kk-1;
u[ix]=u[ix]+d*u[iy];
}
}
}
for (i=kk; i<=m; i++)
{
ix=(i-1)*m+kk-1;
u[ix]=-u[ix];
}
u[iz]=1.0+u[iz];
if (kk-1>=1)
{
for (i=1; i<=kk-1; i++)
{
u[(i-1)*m+kk-1]=0.0;
}
}
}
else
{
for (i=1; i<=m; i++)
{
u[(i-1)*m+kk-1]=0.0;
}
u[(kk-1)*m+kk-1]=1.0;
}
}
}
for (ll=1; ll<=n; ll++)
{
kk=n-ll+1;
iz=kk*n+kk-1;
if ((kk<=l)&&(e[kk-1]!=0.0))
{
for (j=kk+1; j<=n; j++)
{
d=0.0;
for (i=kk+1; i<=n; i++)
{
ix=(i-1)*n+kk-1;
iy=(i-1)*n+j-1;
d=d+v[ix]*v[iy]/v[iz];
}
d=-d;
for (i=kk+1; i<=n; i++)
{
ix=(i-1)*n+j-1;
iy=(i-1)*n+kk-1;
v[ix]=v[ix]+d*v[iy];
}
}
}
for (i=1; i<=n; i++)
{
v[(i-1)*n+kk-1]=0.0;
}
v[iz-n]=1.0;
}
for (i=1; i<=m; i++)
{
for (j=1; j<=n; j++)
{
a[(i-1)*n+j-1]=0.0;
}
}
m1=mm;
it=60;
while (1==1)
{
if (mm==0)
{
ppp(a,e,s,v,m,n);
free(s);
free(e);
free(w);
return(1);
}
if (it==0)
{
ppp(a,e,s,v,m,n);
free(s);
free(e);
free(w);
return(-1);
}
kk=mm-1;
while ((kk!=0)&&(fabs(e[kk-1])!=0.0))
{
d=fabs(s[kk-1])+fabs(s[kk]);
dd=fabs(e[kk-1]);
if (dd>eps*d)
{
kk=kk-1;
}
else
{
e[kk-1]=0.0;
}
}
if (kk==mm-1)
{
kk=kk+1;
if (s[kk-1]<0.0)
{
s[kk-1]=-s[kk-1];
for (i=1; i<=n; i++)
{
ix=(i-1)*n+kk-1;
v[ix]=-v[ix];
}
}
while ((kk!=m1)&&(s[kk-1]<s[kk]))
{
d=s[kk-1];
s[kk-1]=s[kk];
s[kk]=d;
if (kk<n)
{
for (i=1; i<=n; i++)
{
ix=(i-1)*n+kk-1;
iy=(i-1)*n+kk;
d=v[ix];
v[ix]=v[iy];
v[iy]=d;
}
}
if (kk<m)
{
for (i=1; i<=m; i++)
{
ix=(i-1)*m+kk-1; iy=(i-1)*m+kk;
d=u[ix]; u[ix]=u[iy]; u[iy]=d;
}
}
kk=kk+1;
}
it=60;
mm=mm-1;
}
else
{
ks=mm;
while ((ks>kk)&&(fabs(s[ks-1])!=0.0))
{
d=0.0;
if (ks!=mm)
{
d=d+fabs(e[ks-1]);
}
if (ks!=kk+1)
{
d=d+fabs(e[ks-2]);
}
dd=fabs(s[ks-1]);
if (dd>eps*d)
{
ks=ks-1;
}
else
{
s[ks-1]=0.0;
}
}
if (ks==kk)
{
kk=kk+1;
d=fabs(s[mm-1]);
t=fabs(s[mm-2]);
if (t>d)
{
d=t;
}
t=fabs(e[mm-2]);
if (t>d)
{
d=t;
}
t=fabs(s[kk-1]);
if (t>d)
{
d=t;
}
t=fabs(e[kk-1]);
if (t>d)
{
d=t;
}
sm=s[mm-1]/d;
sm1=s[mm-2]/d;
em1=e[mm-2]/d;
sk=s[kk-1]/d;
ek=e[kk-1]/d;
b=((sm1+sm)*(sm1-sm)+em1*em1)/2.0;
c=sm*em1;
c=c*c;
shh=0.0;
if ((b!=0.0)||(c!=0.0))
{
shh=sqrt(b*b+c);
if (b<0.0)
{
shh=-shh;
}
shh=c/(b+shh);
}
fg[0]=(sk+sm)*(sk-sm)-shh;
fg[1]=sk*ek;
for (i=kk; i<=mm-1; i++)
{
sss(fg,cs);
if (i!=kk)
{
e[i-2]=fg[0];
}
fg[0]=cs[0]*s[i-1]+cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1]-cs[1]*s[i-1];
fg[1]=cs[1]*s;
s=cs[0]*s;
if ((cs[0]!=1.0)||(cs[1]!=0.0))
{
for (j=1; j<=n; j++)
{
ix=(j-1)*n+i-1;
iy=(j-1)*n+i;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
}
sss(fg,cs);
s[i-1]=fg[0];
fg[0]=cs[0]*e[i-1]+cs[1]*s;
s=-cs[1]*e[i-1]+cs[0]*s;
fg[1]=cs[1]*e;
e=cs[0]*e;
if (i<m)
{
if ((cs[0]!=1.0)||(cs[1]!=0.0))
{
for (j=1; j<=m; j++)
{
ix=(j-1)*m+i-1;
iy=(j-1)*m+i;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
}
}
e[mm-2]=fg[0];
it=it-1;
}
else
{
if (ks==mm)
{
kk=kk+1;
fg[1]=e[mm-2];
e[mm-2]=0.0;
for (ll=kk; ll<=mm-1; ll++)
{
i=mm+kk-ll-1;
fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
if (i!=kk)
{
fg[1]=-cs[1]*e[i-2];
e[i-2]=cs[0]*e[i-2];
}
if ((cs[0]!=1.0)||(cs[1]!=0.0))
{
for (j=1; j<=n; j++)
{
ix=(j-1)*n+i-1;
iy=(j-1)*n+mm-1;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
}
}
}
else
{
kk=ks+1;
fg[1]=e[kk-2];
e[kk-2]=0.0;
for (i=kk; i<=mm; i++)
{
fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
fg[1]=-cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1];
if ((cs[0]!=1.0)||(cs[1]!=0.0))
{
for (j=1; j<=m; j++)
{
ix=(j-1)*m+i-1;
iy=(j-1)*m+kk-2;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
}
}
}
}
}
return(1);
}</P><>static void ppp(double a[],double e[],double s[],double v[],int m,int n)
{
int i,j,p,q;
double d;
if (m>=n)
{
i=n;
}
else
{
i=m;
}
for (j=1; j<=i-1; j++)
{
a[(j-1)*n+j-1]=s[j-1];
a[(j-1)*n+j]=e[j-1];
}
a[(i-1)*n+i-1]=s[i-1];
if (m<n)
{
a[(i-1)*n+i]=e[i-1];
}
for (i=1; i<=n-1; i++)
{
for (j=i+1; j<=n; j++)
{
p=(i-1)*n+j-1;
q=(j-1)*n+i-1;
d=v[p];
v[p]=v[q];
v[q]=d;
}
}
return;
}</P><>static void sss(double fg[2],double cs[2])
{
double r,d;
if ((fabs(fg[0])+fabs(fg[1]))==0.0)
{
cs[0]=1.0;
cs[1]=0.0;
d=0.0;
}
else
{
d=sqrt(fg[0]*fg[0]+fg[1]*fg[1]);
if (fabs(fg[0])>fabs(fg[1]))
{
d=fabs(d);
if (fg[0]<0.0)
{
d=-d;
}
}
if (fabs(fg[1])>=fabs(fg[0]))
{
d=fabs(d);
if (fg[1]<0.0)
{
d=-d;
}
}
cs[0]=fg[0]/d;
cs[1]=fg[1]/d;
}
r=1.0;
if (fabs(fg[0])>fabs(fg[1]))
{
r=cs[1];
}
else
{
if(cs[0]!=0.0)
{
r=1.0/cs[0];
}
fg[0]=d;
fg[1]=r;
return;
}
}
</P> |
|