数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 6201|回复: 1

数学专业英语-(a) How to define a mathematical term?

[复制链接]
发表于 2004-5-6 10:05:26 | 显示全部楼层 |阅读模式
< ><FONT face="Times New Roman"> <p></p></FONT></P>
< ><FONT face="Times New Roman">    </FONT>数学术语的定义和数学定理的叙述,其基本格式可归纳为似“<FONT face="Times New Roman">if…then…</FONT>”的格式,其他的格式一般地说可视为这一格式的延伸或变形。<p></p></P>
< ><FONT face="Times New Roman">    </FONT>如果一定语短语或定语从句,以界定被定义的词,所得定义表面上看虽不是“<FONT face="Times New Roman">If……then……</FONT>”的句型,而实际上是用“定语部分”代替了“<FONT face="Times New Roman">If</FONT>”句,因此我们可以把“定语部分”写成<FONT face="Times New Roman">If</FONT>句,从而又回到“<FONT face="Times New Roman">If……then……</FONT>”的句型。<p></p></P>
<P ><FONT face="Times New Roman">    </FONT>至于下面将要叙述的“<FONT face="Times New Roman">Let…if…then</FONT>”,“<FONT face="Times New Roman">Let and assume…, If…then…</FONT>”等句型,其实质也是基本句型“<FONT face="Times New Roman">If……then……</FONT>”的延伸。<p></p></P>
<P ><FONT face="Times New Roman">    </FONT>有时,在定义或定理中,需要附加说明某些成份,我们还可在“<FONT face="Times New Roman">if…then…</FONT>”句中插入如“<FONT face="Times New Roman">where…</FONT>”等的句子,加以延伸(见后面例子)。<p></p></P>
<P ><FONT face="Times New Roman">    </FONT>总之,绝大部分(如果不是全部的话)数学术语的定义和定理的叙述均可采用本附录中各种格式之。<p></p></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<H2  align=center><A>(<FONT face="Times New Roman">a</FONT></A>)<FONT face="Times New Roman">How to define a mathematical term?</FONT></H2>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<TABLE  cellSpacing=0 cellPadding=0 align=left border=1>

<TR >
<TD  vAlign=top width=96>
<P ><FONT face="Times New Roman">is defined as<p></p></FONT></P>
<P ><FONT face="Times New Roman">is called<p></p></FONT></P></TD></TR></TABLE>
<P ><FONT face="Times New Roman">1. Something   something<p></p></FONT></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<P ><FONT face="Times New Roman">     The union of A and B <U>is defined as</U> the set of those elements which are in A, in B or in both. <p></p></FONT></P>
<P ><FONT face="Times New Roman">     The mapping </FONT><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">, ad-bc</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">0, <U>is called </U>a Mobius transformation. <p></p></FONT></P>
<TABLE  cellSpacing=0 cellPadding=0 align=left border=1>

<TR >
<TD  vAlign=top width=120>
<P ><FONT face="Times New Roman">is defined to be<p></p></FONT></P>
<P ><FONT face="Times New Roman">is said to be     <p></p></FONT></P></TD></TR></TABLE>
<P ><FONT face="Times New Roman">2. Something                     something(or adjective)<p></p></FONT></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<P ><FONT face="Times New Roman">   The difference A-B<U> is defined to be</U> the set of all elements of A which are not in B.<p></p></FONT></P>
<P ><FONT face="Times New Roman">   A real number that cannot be expressed as the ratio of two integers<U> is said to be</U> an irrational number.<p></p></FONT></P>
<P ><FONT face="Times New Roman">   Real numbers which are greater than zero <U>are said to be</U> positive.<p></p></FONT></P>
<TABLE  cellSpacing=0 cellPadding=0 align=left border=1>

<TR >
<TD  vAlign=top width=60>
<P ><FONT face="Times New Roman">define<p></p></FONT></P>
<P ><FONT face="Times New Roman">call<p></p></FONT></P></TD></TR></TABLE>
<P ><FONT face="Times New Roman"> 3. We         something to be something.<p></p></FONT></P>
<P ><FONT face="Times New Roman">     <p></p></FONT></P>
<P ><FONT face="Times New Roman">    <p></p></FONT></P>
<P ><FONT face="Times New Roman">    We <U>define</U> the intersection of A and B<U> to be</U> the set of those elements common to both A and B.<p></p></FONT></P>
<P ><FONT face="Times New Roman">    We <U>call</U> real numbers that are less than zero (<U>to be</U>) negative numbers.<p></p></FONT></P>
<P ><FONT face="Times New Roman"> 4. </FONT>如果在定义某一术语之前,需要事先交代某些东西(前提),可用如下形式:<p></p></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<TABLE  cellSpacing=0 cellPadding=0 align=left border=1>

<TR >
<TD  vAlign=top width=115>
<P ><FONT face="Times New Roman">is called<p></p></FONT></P>
<P ><FONT face="Times New Roman">is said to be<p></p></FONT></P>
<P ><FONT face="Times New Roman">is defined as<p></p></FONT></P>
<P ><FONT face="Times New Roman">is defined to be<p></p></FONT></P></TD></TR></TABLE>
<P ><FONT face="Times New Roman">  Let…, then…<p></p></FONT></P>
<P ><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">  <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <U> Let</U>  x=(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">) be an n-tuple of real numbers. <U>Then</U> the set of all such n-tuples <U>is defined as</U> the Euclidean n-space R.<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">  <U>Let </U>d(x,y) denote the distance between two points x and y of a set A. <U>Then</U> the number<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">                D=  </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><p></p></P>
<P  align=left><FONT face="Times New Roman">  <U>is called</U> the diameter of A.<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">5</FONT>.如果被定义术语,需要满足某些条件,则可用如下形式:<p></p></P>
<TABLE  cellSpacing=0 cellPadding=0 align=left border=1>

<TR >
<TD  vAlign=top width=120>
<P  align=left><FONT face="Times New Roman">is called<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">is said to be<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">is defined as<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">is defined to be<p></p></FONT></P></TD></TR></TABLE>
<P  align=left><FONT face="Times New Roman">   If…, then… <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">   <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">   <U>If</U> the number of rows of a matrix A equals the number of its columns, <U>then</U> A is called a square matrix.<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">   <U>If </U>a function f is differentiable at every point of a domain D, <U>then it is said to be </U>analytic in D.<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">6.</FONT>如果需要说明被定义术语应在什么前提下,满足什么条件,则可用下面形式:<p></p></P>
<P  align=left><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:path connecttype="rect" gradientshapeok="t"></v:path></v:shapetype><v:shape></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">

<TR>
<TD >
<DIV class=shape  v:shape="_x0000_s1027">
<P ><FONT face="Times New Roman">is called</FONT></P>
<P ><FONT face="Times New Roman">is said to be</FONT></P></DIV></TD></TR></TABLE><v:shape><v:textbox style="mso-next-textbox: #_x0000_s1026"><FONT face="Times New Roman" size=3></FONT></v:textbox></v:shape>
<TABLE cellSpacing=0 cellPadding=0 width="100%">

<TR>
<TD >
<DIV class=shape  v:shape="_x0000_s1026">
<P ><FONT face="Times New Roman">Let</FONT></P>
<P ><FONT face="Times New Roman">Suppose</FONT></P></DIV></TD></TR></TABLE><FONT face="Times New Roman">              …. If…then…             …<p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman"> <p></p></FONT></P>
<P  align=left><FONT face="Times New Roman">  <U>Let </U>f(z) be an analytic function defined on a domain D (</FONT>前提条件<FONT face="Times New Roman">). <U>If</U> for every pair or points</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">, and </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman"> in D with </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">, we have f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">)</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">) (</FONT>直接条件<FONT face="Times New Roman">)</FONT>,<FONT face="Times New Roman"><U>then </U>f(z) <U>is called</U> a schlicht function or<U> is said to be</U> schlicht in D.<p></p></FONT></P>
<P  align=left><p></p> </P>
 楼主| 发表于 2004-5-6 10:05:38 | 显示全部楼层
< 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; TEXT-ALIGN: left; mso-char-indent-count: -1.5; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman">7. </FONT>如果被定义术语需要满足几个条件(大前提,小前提,直接条件)则可用如下形式:<p></p></P>< 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; TEXT-ALIGN: left; mso-char-indent-count: -1.5; mso-char-indent-size: 12.0pt" align=left><v:shape></v:shape><TABLE cellSpacing=0 cellPadding=0 width="100%"><TR><TD #ece9d8; BORDER-TOP: #ece9d8; BORDER-LEFT: #ece9d8; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent"><DIV class=shape 7.2pt; PADDING-LEFT: 7.2pt; PADDING-BOTTOM: 3.6pt; PADDING-TOP: 3.6pt" v:shape="_x0000_s1028">< 0cm 0cm 0pt"><FONT face="Times New Roman">suppose</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">assume</FONT></P></DIV></TD></TR></TABLE><FONT face="Times New Roman">     Let…and             …. If…then…is called…<p></p></FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; TEXT-ALIGN: left; mso-char-indent-count: -1.5; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; TEXT-ALIGN: left; mso-char-indent-count: -1.5; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; TEXT-ALIGN: left; mso-char-indent-count: -1.5; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman">     <U>Let</U> D be a domain <U>and suppose</U> that f(z) is analytic in D.<U> If</U> for every pair of points </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman"> and </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman"> in D with</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman">, we have f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">)</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">f(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">), <U>then</U> f(z) is called a schlicht function.<p></p></FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; TEXT-ALIGN: left; mso-char-indent-count: -1.5; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; TEXT-ALIGN: left; mso-char-indent-count: -1.5; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman">Notes:<p></p></FONT></P><P 0cm 0cm 0pt 18.75pt; TEXT-INDENT: -18.75pt; TEXT-ALIGN: left; tab-stops: list 18.75pt; mso-list: l53 level1 lfo70" align=left><FONT face="Times New Roman">(a)    </FONT>一种形式往往可写成另一种形式。<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">Let{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}be a sequence of sets. If</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">for all n, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending or a non-decreasing sequence.<p></p></FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 12pt; TEXT-ALIGN: left; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt" align=left>我们可用一定语短语来代替“<FONT face="Times New Roman">If</FONT>”句,使其变为“<FONT face="Times New Roman">Let……then</FONT>”句<p></p></P><P 0cm 0cm 0pt; TEXT-INDENT: 12pt; TEXT-ALIGN: left; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman">Let{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}be a sequence of sets with</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">for all n, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending or a non-decreasing sequence.<p></p></FONT></P><P 0cm 0cm 0pt 18.75pt; TEXT-INDENT: -18.75pt; TEXT-ALIGN: left; tab-stops: list 18.75pt; mso-list: l53 level1 lfo70" align=left><FONT face="Times New Roman">(b)    </FONT>注意“<FONT face="Times New Roman">Let</FONT>”,“<FONT face="Times New Roman">suppose</FONT>”(“<FONT face="Times New Roman">assume</FONT>”),“<FONT face="Times New Roman">if</FONT>”的使用次序,一般来说,前面的可用后面的替换,但后面的用前面的替换就不好了,如上面句子可改写为:<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">     Suppose{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is a sequence of sets. If</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending sequence.<p></p></FONT></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">     Let{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}be a sequence of sets and suppose that</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending sequence.<p></p></FONT></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">     </FONT>但下面的句子是错误的(至少是不好的句子);<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">     If{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is a sequence of sets, and let</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">, then{</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">}is called an ascending sequence.<p></p></FONT></P><P 0cm 0cm 0pt 18.75pt; TEXT-INDENT: -18.75pt; TEXT-ALIGN: left; tab-stops: list 18.75pt; mso-list: l53 level1 lfo70" align=left><FONT face="Times New Roman">(c)    </FONT>在定义一些术语后,往往需要用符号来表达,或者需要对句中某些成份作附加说明,这时我们需要把定义句扩充,扩充的办法是在定义的原有结构中,插入一个由连接词引导的句子,这类连接词或短语经常是“<FONT face="Times New Roman">and</FONT>”,“<FONT face="Times New Roman">where</FONT>”,“<FONT face="Times New Roman">in this (that) case</FONT>”<FONT face="Times New Roman">…</FONT>请参看<FONT face="Times New Roman">PARTIA</FONT>第一课注<FONT face="Times New Roman">1</FONT>和第二课注<FONT face="Times New Roman">4</FONT>、<FONT face="Times New Roman">5</FONT>、<FONT face="Times New Roman">6</FONT>。<p></p></P><P 0cm 0cm 0pt; TEXT-INDENT: 12pt; TEXT-ALIGN: left; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt" align=left><FONT face="Times New Roman">If every element of a set A also belongs to another set B, then A is said to be the subset of B, </FONT><U><FONT face="Times New Roman">and we write </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></U><p></p></P><P 0cm 0cm 0pt 18.75pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">  A real number is said to be a rational if it can be expressed as the ratio of two integers, <U>where the denominator is not zero.<p></p></U></FONT></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">(d) </FONT>在定义中,“<FONT face="Times New Roman">if</FONT>”句是关键句,且往往比较复杂,要特别注意在一些定义中,“<FONT face="Times New Roman">if</FONT>”句又有它自己的表达格式,读者对这类句子的结构也要掌握,下面我们以函数极限定义中的“<FONT face="Times New Roman">if</FONT>”句的结构作为例子加以说明:<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><U><FONT face="Times New Roman">If for every</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape></U><U>>0, there is (there exists) a <v:shape><v:imagedata></v:imagedata></v:shape>>0, such that</U> <v:shape><v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape><U>whenever</U> 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>, then we say f(x) has a limit A at the point a.<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left>   上面是函数极限的定义,其中的“if”句是它的典型结构,凡与极限相关的概念,如连续,收敛,一致连续,一致收敛等定义均有类似结构。例:<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left>    A sequence of functions {<v:shape> <v:imagedata></v:imagedata></v:shape>} is said to have the Cauchy property uniformly on a set E if for any <v:shape><v:imagedata></v:imagedata></v:shape>>0, there is an N such that<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>whenever n,m>N.<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left>    当然,极限定义还有其他表达形式但基本结构是一样的,只不过对句中某些部分用等价的语法结构互作替换而已。<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left>    下面是函数极限定义中“if”句的另一些表达式,读者可把这些句子和原来的句子作比较。<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left>  If, given any<v:shape> <v:imagedata></v:imagedata></v:shape>>0, there exists a <v:shape><v:imagedata></v:imagedata></v:shape>>0, such that<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>whenever (if,for) 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>,…<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left>  If, corresponding to any <v:shape><v:imagedata></v:imagedata></v:shape>>0, a <v:shape><v:imagedata></v:imagedata></v:shape>>0 can be found such that<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>whenever 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>,…<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left><FONT face="Times New Roman">  If, for every </FONT><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape>>0,there is a <v:shape><v:imagedata></v:imagedata></v:shape>>0, such that 0<<v:shape> <v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>implies <v:shape><v:imagedata></v:imagedata></v:shape><<v:shape> <v:imagedata></v:imagedata></v:shape>.<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: left" align=left> <p></p></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-30 07:45 , Processed in 0.061864 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表