数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 9561|回复: 3

数学专业英语-The Role of Mathematics in Economics

[复制链接]
发表于 2004-5-6 09:52:30 | 显示全部楼层 |阅读模式
< ><FONT size=3><FONT face="Times New Roman">Economics is a mathematical discipline. This assertion may seem strange to the traditional political economist, but mathematical methods were introduced at an early stage (Cournot,1838) in the two-hundred-year history of our subject and have been steadily growing in significance .At the present time and, essentially, since the end of World War</FONT>Ⅱ<FONT face="Times New Roman">,mathematical methods have become predominant in American economics. The mathematical approach was originally inspired in Europe and England but it has flowered in America, with no little stimulus from European immigrants. The mathematical approach is steadily gaining favor throughout the world, especially because the younger generation in developing economics is embracing the new methods and because the socialist countries have shed a previous bias against the use of mathematical methods in economics. It is clear that the future development of economics will see continued and increasing use of mathematics, although it would be rash to assume that the future course of economic analysis will be predominantly mathematical as it has been in the last twenty years.</FONT></FONT></P>
<  align=center><B><FONT face="Times New Roman">The Economic Problem<p></p></FONT></B></P>
< ><FONT face="Times New Roman" size=3>A favored definition of economics (Lionel Robbins, 1932) is “…the science which studies human behavior as a relationship between ends and scarce means which have alternative uses.” Whether or not we accept this definition as bracketing all of economics, it is a good starting point for our discussion of the role of mathematics .I might want to sharpen this definition by noting that economists try to select among alternative uses of scarce resources in such a way as to make the most efficient (or lease wasteful) employment of resources to achieve stated ends.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Stated in this way, we see clearly that economics involves optimization, and this is the engine that produces principles of economic analysis. We have either a maximum problem or a minimum problem, which is a compelling reason for the use of mathematics. An abstract economy is viewed as consisting of numerous consuming and producing units, who make optimal decisions about their own economic behaviour, given market prices, and then interact with one another to clear supply and demand in markets to determine prices.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Economic theory usually begins with an analysis of the individual consumer who attempts to maximize his satisfaction, subject to a budget constraint (or to minimize budget outlays for the attainment of any given level of satisfaction).The theory then takes up the analysis of producers who strive to maximize profits, Subject to a technological constraint (or minimize cost for reaching a given output level, subject to a technological constraint). These are the typical optimization problems of economics.</FONT></P>
<P ><FONT face="Times New Roman" size=3>The standard mathematical formulations of these problems are as follows. The consumer problem is to maximize a utility function </FONT></P>
<P ><FONT face="Times New Roman" size=3>                    </FONT><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape></P>
<P ><FONT face="Times New Roman" size=3>of quantities </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT size=3><FONT face="Times New Roman"> of goods and services consumed, subject to the requirement of living within a fixed income </FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>                   </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape></P>
<P ><FONT face="Times New Roman" size=3>where </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT size=3><FONT face="Times New Roman"> are the respective prices of the goods and services consumed. The producer problem is to maximize income minus production costs</FONT></FONT></P>
<P ><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape></P>
<P ><FONT face="Times New Roman" size=3>where </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT size=3><FONT face="Times New Roman"> are inputs of factors of production and </FONT></FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT size=3><FONT face="Times New Roman"> are their costs, subject to the restraint imposed by a technical production function</FONT></FONT></P>
<P ><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape></P>
<P ><FONT face="Times New Roman" size=3>of the quantities </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT size=3><FONT face="Times New Roman"> of goods and services produced and of the production factor inputs </FONT></FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman" size=3>.</FONT></P>
<P ><FONT face="Times New Roman" size=3>These two formulations pose the economic problem as the maximization of utility (satisfaction), subject to a budget constraint, and the maximization of profit, subject to a technologicsi constraint.We could also formulate minimum problems that seek minimum production costs for producing a given combination of outputs and the least-cost budget to achieve a given level of utility.</FONT></P>
<P  align=center><B><FONT face="Times New Roman">Treatment of optimization problems</FONT></B></P>
<P ><FONT face="Times New Roman" size=3>The consequences of these maximization or minimization problems have been enormous for economics in building a set of rules of behavior. Nearly all economic truths have some root in these or closely related propositions. The original mathematical attack was quite straightforward. Assume that </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman" size=3>and </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman" size=3>are smooth continuous functions (with first and second deriva tives), and optimize according to the rules of the differential calculus, given market prices. The necessary and sufficient conditions for optimization define the well –known demand and supply functions of economics of economics and establish many properties of these functions.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   For the problem as I have stated it, these solutions are well established and have been in the literature of economics for more than fifty years. Refined points are made from time to time but the ramifications of this theory were made clear in mathematical treatments by Pareto (1896), Slutsky (1915), Fisher (1892), Hotelling (1932), Frisch (1932), Hicks and Allen (1943), Samuelson (1947).</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> In the 1930's, and again after World War </FONT>Ⅱ<FONT face="Times New Roman">, these problems received extended mathematical treatment ,The extensions were to optimize over time either continuously or in finite incremental periods and to enlarge the number of side conditions. In stochastic models (i.e., those that incorporate chance), uncertainty about future conditions such as price can be introduced. Also, we can allow for the accumulation of tiny neglected factors that always influence human decisions.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  The subjective nature of the utility function, </FONT></FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT size=3><FONT face="Times New Roman"> led to analysis of conditions in which the results of optimization would be invariant under transformations of the function and to study of the possibility of deriving a utility function, starting from objective demand functions. The latter problem became known as the integrability problem.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  It may be remarked that the early development of mathematical economics followed the steps of physics and engineering. There are many analogies between the classical methods of mathematical economics and the laws of mechanics, thermodynamics, and similar branches of science. In some cases, there was a tendency to draw strict analogies that could hardly be rationalized in terms of economic behavior.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">   An idea that received much encouragement from J. Von Neumann was that mathematical economics should draw upon different branches of mathematics that were more suited to the peculiar nature of the economic problem and economic variables. It was even suggested that new mathematical methods might be developed that would be tailored to economics .In the sense that mathematicians of the eighteenth and nineteenth centuries developed methods that were suited to the problems of physics, we might hope that modern mathematicians would receive inspiration from problems of economics, and social sciences generally. To some extent, this development has occurred in linear programming and optimization theory for situations in which the ordinary methods of differential calculus do not apply. It is up to the mathematicians themselves, however, to decide the significance of this line of development in modern mathematics.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                                                        ----------Lawrence R.Klein</FONT></FONT></P>
 楼主| 发表于 2004-5-6 09:52:43 | 显示全部楼层
<DIV class=Section1 style="LAYOUT-GRID:  15.6pt none">< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><B><FONT face="Times New Roman">Vocabulary</FONT></B></P>< 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P></DIV><BR auto; mso-break-type: section-break" clear=all><DIV class=Section2 style="LAYOUT-GRID:  15.6pt none">< 0cm 0cm 0pt"><FONT face="Times New Roman">predominant     </FONT>主导的<FONT face="Times New Roman">                     </FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">economic analysis    </FONT>经济分析</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">scarce resource    </FONT>不充足资源</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">outlay        </FONT>开支、费用</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">income       </FONT>收入</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">proposition    </FONT>命题</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">smooth       </FONT>光滑</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">increment     </FONT>增量</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">incremental    </FONT>增量的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">stochastic      </FONT>随机的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">derive         </FONT>推出</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">thermodynamics   </FONT>热动力学</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">rationalize        </FONT>合理化</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">market price      </FONT>市场价格</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">supply            </FONT>供应,供给</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">demand          </FONT>需求</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">budget           </FONT>预算</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">budget outlay      </FONT>预算开支</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">profit          </FONT>利益,利润</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">cost           </FONT>成本</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">goods       </FONT>货物</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">services          </FONT>服务</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">ramification (of the theory )   </FONT>理论的)细节</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">side condition      </FONT>附属条件</P></DIV><BR auto; mso-break-type: section-break" clear=all><DIV class=Section3 style="LAYOUT-GRID:  15.6pt none"></DIV><BR always; mso-break-type: section-break" clear=all>
 楼主| 发表于 2004-5-6 09:52:57 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><B><FONT face="Times New Roman">Notes</FONT></B></P>< 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l54 level1 lfo28"><FONT face="Times New Roman">1.       </FONT>象<FONT face="Times New Roman">two-hundred-year ( </FONT>两百年<FONT face="Times New Roman">)</FONT>这样的复合词,<FONT face="Times New Roman">year </FONT>不用复数。例如:<FONT face="Times New Roman">Five-year-plan (</FONT>五年计划<FONT face="Times New Roman">)</FONT></P>< 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l54 level1 lfo28"><FONT face="Times New Roman">2.       The mathematical approach was originally inspired in Europe and England but it has flowered in America with no little stimulus from European immigrants.</FONT></P><P 0cm 0cm 0pt 18pt">意思是:这种数学方法创于欧洲大陆和英国,但是已经在美洲(美国)开花,当然少不了欧洲移民的激励。这里<FONT face="Times New Roman">flower</FONT>作为动词用;而且<FONT face="Times New Roman"> with no little stimulus </FONT>是一种肯定语气。</P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l54 level1 lfo28"><FONT face="Times New Roman">3.       Whether or not we accept this definition as bracketing all of economics, it is a good starting point for our discussion of the role of mathematics.</FONT></P><P 0cm 0cm 0pt 10.5pt; TEXT-INDENT: -10.5pt; mso-char-indent-count: -1.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">   </FONT>意思是:不管我们是否接受这个定义作为概括所有经济学,它都是我们用讨论数学(用于经济学)作用的一个良好起点,这里<FONT face="Times New Roman">bracketing </FONT>作为“概括”解<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l54 level1 lfo28"><FONT face="Times New Roman">4.       An abstract economy is viewed as … who make optimal decisions about their own economic behaviour, given market prices, and then interact with one another to clear supply and demand in markets to determine prices.</FONT></P><P 0cm 0cm 0pt 18pt">意思是:抽象经济可以看成由许多个消费和生产单位所组成,这些单位(的决策者)就他们自己的经济行为——给出市场价格——作出最优决策,然后相互去特约市场的供需交换,以便确定价格。这里</P><P 0cm 0cm 0pt 39pt; TEXT-INDENT: -18pt; tab-stops: list 39.0pt; mso-list: l54 level2 lfo28"><FONT face="Times New Roman">1)  who </FONT>可理解为<FONT face="Times New Roman">units </FONT>的决策人的关系代词</P><P 0cm 0cm 0pt 39pt; TEXT-INDENT: -18pt; tab-stops: list 39.0pt; mso-list: l54 level2 lfo28"><FONT face="Times New Roman">2)  given market prices </FONT>是<FONT face="Times New Roman">economic behaviour</FONT>的同位语。</P><P 0cm 0cm 0pt 39pt; TEXT-INDENT: -18pt; tab-stops: list 39.0pt; mso-list: l54 level2 lfo28"><FONT face="Times New Roman">3)  one another </FONT>是指<FONT face="Times New Roman">units </FONT>之间,而不是指<FONT face="Times New Roman">market prices </FONT>之间</P><P 0cm 0cm 0pt 39pt; TEXT-INDENT: -18pt; tab-stops: list 39.0pt; mso-list: l54 level2 lfo28"><FONT face="Times New Roman">4)  clear </FONT>这一词用于商业上其意思是:“卖光,买光,交换,清理”等。</P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l54 level1 lfo28"><FONT face="Times New Roman">5.       New mathematical methods might be developed that would be tailored to economics.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">        tailor </FONT>是“裁缝”的意思,这里作动词用,意思是:“使其适用于经济学”</P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l54 level1 lfo28"><FONT face="Times New Roman">6.       Up to </FONT>作“取决于”解。</P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P>
 楼主| 发表于 2004-5-6 09:53:10 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman">           <B>   </B><B>Exercise<p></p></B></FONT></P>< 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt">Ⅰ<FONT face="Times New Roman"> .Give an example of a typical optimation problem of Economics so as to show that Economics needs mathematics.</FONT></P>< 0cm 0cm 0pt">Ⅱ<FONT face="Times New Roman">. Translate the following passage into Chinese:</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">   Economic analysis has, in the last twenty years, become predominantly mathematical. This is particularly true in the United States, where doctoral candidates now substitute various courses in mathematics for at least some of the traditional foreign language requirement. Economic problems involving optimal decisions by government and business or stable growth of an economy have analogies in problems of physics and engineering that have long been successfully treated mathematically, But economics has outgrown the days when it merely aped the physical sciences in applying mathematics. The author suggests that in the coming era economics may call forth its own branch of mathematics or provide inspiration for great new mathematical discoveries.</FONT></P><P 0cm 0cm 0pt">Ⅲ<FONT face="Times New Roman">. Translate the following sentences into English (make use of the phrase in bracket and see whether one can be replaced by the other or not):</FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l16 level1 lfo29"><FONT face="Times New Roman">1.       </FONT>求在下列限制条件下,函数<FONT face="Times New Roman">F(x, y) </FONT>的最大值。(<FONT face="Times New Roman">Subject to </FONT>)</P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l16 level1 lfo29"><FONT face="Times New Roman">2.       </FONT>设<v:shapetype><FONT face="Times New Roman"> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></FONT></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape>其中<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>是一集合,<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>是实数集,若<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>满足如下条件:</P><P 0cm 0cm 0pt 18pt">(Ⅰ)<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">;(</FONT>Ⅱ<FONT face="Times New Roman">)</FONT>当且仅当<FONT face="Times New Roman">x=y</FONT>时,<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">;(</FONT>Ⅲ<FONT face="Times New Roman">)</FONT>对称性:<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">(</FONT>Ⅳ<FONT face="Times New Roman">)</FONT>三角不等式:<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>其中<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">.</FONT>则称<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>是一距离函数<FONT face="Times New Roman">.</FONT>(<FONT face="Times New Roman">Satisfy the following condition(s)</FONT>)<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">3.</FONT>设<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>是定义在区间Ⅰ的一个连续函数,则在区间Ⅰ是有界闭的假设下,我们可以断言,<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>在Ⅰ上一致连续(<FONT face="Times New Roman">Under the assumption (hypothesis); claim</FONT>)</P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-26 20:43 , Processed in 0.096801 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表