|
< ><FONT face="Times New Roman" size=3>During the present century modern abstract algebra has become more and more important as a tool for research not only in other branches of mathematics but even in other sciences .Many discoveries in abstract algebra itself have been made during the past years and the spirit of algebraic research has definitely tended toward more abstraction and rigor so as to obtain a theory of greatest possible generality. In particular, the concepts of group ,ring,integral domain and field have been emphasized.</FONT></P>
< ><FONT face="Times New Roman" size=3>The notion of an abstract group is fundamental in all sciences ,and it is certainly proper to begin our subject with this concept. Commutative additive groups are made into rings by assuming closure with respect to a second operation having some of the properties of ordinary multiplication. Integral domains and fields are rings restricted in special ways and may be fundamental concepts and their more elementary properties are the basis for modern algebra.</FONT></P>
< ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P ><B><FONT size=3><FONT face="Times New Roman">Groups<p></p></FONT></FONT></B></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"><B>DEFINITION</B> A non-empty set G of elements a,b,…is said to form a group with respect to 0 if:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>I.</FONT> <FONT size=3>G is closed with respect to 0</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>II.</FONT> <FONT size=3>The associative law holds in G, that is </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">a</FONT>о<FONT face="Times New Roman">(b</FONT>о<FONT face="Times New Roman">c)=(a</FONT>о<FONT face="Times New Roman">b)</FONT>о<FONT face="Times New Roman">c</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>for every a, b, c of G</FONT></P>
<P ><FONT size=3>Ⅲ<FONT face="Times New Roman">. For every a and b of G there exist solutions </FONT>χ<FONT face="Times New Roman"> and </FONT>У<FONT face="Times New Roman"> in G of the equations</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> a</FONT>οχ<FONT face="Times New Roman">=b y</FONT>ο<FONT face="Times New Roman">a=b</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">A group is thus a system consisting of a set of elements and operation </FONT>ο<FONT face="Times New Roman"> with respect to which G forms a group. We shall generally designate the entire system by the set G of its elements and shall call G a group. The notation used for the operation is generally unimportant and may be taken in as convenient a way as possible. </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3><B>DEFINITION</B> A group G is called commutative or abelian if</FONT></FONT></P>
<P ><FONT size=3><B><FONT face="Times New Roman">a</FONT></B><B>ο<FONT face="Times New Roman">b=b</FONT></B><B>ο<FONT face="Times New Roman">a<p></p></FONT></B></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>For every <B> a</B> and <B> b</B> of <B>G.<p></p></B></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">An elementary physical example of an abelian group is a certain rotation group. We let G consist of the rotations of the spoke of a wheel through multiples of 90</FONT>º<FONT face="Times New Roman"> and a</FONT>ο<FONT face="Times New Roman">b be the result of the rotation a followed by the rotation b. The reader will easily verify that G forms a group with respect to </FONT>ο<FONT face="Times New Roman"> and that a</FONT>ο<FONT face="Times New Roman">b=b</FONT>ο<FONT face="Times New Roman">a. There is no loss of generality when restrict our attention to multiplicative groups, that is, write ab in stead of a</FONT>ο<FONT face="Times New Roman">b.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><B><FONT face="Times New Roman"><FONT size=3>EQUIVALENCE<p></p></FONT></FONT></B></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">In any study of mathematical systems the concept of equivalence of systems of the same kind always arises. Equivalent systems are logically distinct but we usually can replace any one by any other in a mathematical discussion with no loss of generality. For groups this notion is given by the definition: let G and G</FONT>´<FONT face="Times New Roman"> be groups with respective operations o and o</FONT>´<FONT face="Times New Roman">,and let there be a1-1 correspondence</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>S : </FONT></FONT><B><FONT face="Times New Roman" size=3>a</FONT><v:shapetype><FONT face="Times New Roman"><FONT size=3> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></FONT></FONT></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>a</FONT></B><FONT size=3><B>´<FONT face="Times New Roman"> (a in G and a</FONT></B><B>´<FONT face="Times New Roman"> in G</FONT></B><B>´<FONT face="Times New Roman">)<p></p></FONT></B></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">between G and G</FONT>´<FONT face="Times New Roman"> such that</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> (a</FONT>ο<FONT face="Times New Roman">b)</FONT>´<FONT face="Times New Roman">=a</FONT>´ο<FONT face="Times New Roman"> b</FONT>´<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">for all a, b of G. then we call G and G</FONT>´<FONT face="Times New Roman">equivalent(or simply, isomorphic)groups.</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>The relation of equivalence is an equivalence relation in the technical sense in the set of all groups. We again emphasize that while equivalent groups may be logically distinct they have identical properties.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">The groups G and G</FONT>´<FONT face="Times New Roman"> of the above definition need not be distinct of course and o</FONT>´<FONT face="Times New Roman"> may be o. when this is the case the self-equivalence S of G is called an automorphism. </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> I: </FONT></FONT><B><FONT size=3><FONT face="Times New Roman"> a </FONT></FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT size=3><FONT face="Times New Roman"> a<p></p></FONT></FONT></B></P>
<P ><FONT face="Times New Roman" size=3>Of G, but other automorphisms may also exist.</FONT></P>
<P ><FONT face="Times New Roman" size=3> </FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"><B>Rings</B> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>A ring is an additive abelian group B such that </FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>I.</FONT> <FONT size=3>the set B is closed with respect to a second operation designated by multiplication; that is , every a and b of B define a unique element ab of B.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>II.</FONT> <FONT size=3>multiplication is associative; that is </FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>a (bc) = (ab)c</FONT></P>
<P ><FONT face="Times New Roman" size=3>for every a, b, c of B.</FONT></P>
<P ><FONT size=3>Ⅲ<FONT face="Times New Roman">. The distributive laws </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <B> a (b+c) = ab +ac (b+c) a=ba +ca<p></p></B></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>hold for every a, b, c of B.</FONT></P>
<P ><FONT face="Times New Roman" size=3>The concept of equivalence again arises. We shall write</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <B> B </B></FONT><B>≌<FONT face="Times New Roman"> B</FONT></B><B>′<p></p></B></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">to mean that B and B</FONT>′<FONT face="Times New Roman">are equivalent.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P> |
|