|
< ><FONT face="Times New Roman"> <FONT size=3>This lesson deals with the concept of continuity, one of the most important and also one of the most fascinating ideas in all of mathematics. Before we give a preeise technical definition of continuity, we shall briefly discuss the concept in an informal and intuitive way to give the reader a feeling for its meaning.</FONT></FONT></P>
< ><FONT face="Times New Roman"><FONT size=3> Roughly speaking the situation is this: Suppose a function <I>f </I>has the value <I>f ( p )</I> at a certain point <I>p</I>. Then <I>f</I> is said to be continuous at p if at every nearby point <I>x</I> the function value <I>f ( x )</I> is close to <I>f ( p )</I>. Another way of putting it is as follows: If we let <I>x</I> move toward <I>p</I>, we want the corresponding function value <I>f ( x )</I> to become arbitrarily close to <I>f ( p )</I>, regardless of the manner in which <I>x </I>approaches <I>p</I>. We do not want sudden jumps in the values of a continuous function.</FONT></FONT></P>
< ><FONT face="Times New Roman"><FONT size=3> Consider the graph of the function <I>f</I> defined by the equation <I>f ( x ) = x –[ x ]</I>, where <I>[ x ] </I>denotes the greatest integer < <I>x</I> . At each integer we have what is known ad a jump discontinuity. For example, <I>f ( 2 ) </I>= 0 ,but as x approaches 2 from the left, <I>f ( x )</I> approaches the value 1, which is not equal to <I>f ( 2 )</I>.Therefore we have a discontinuity at 2. Note that <I>f ( x )</I> does approach <I>f ( 2 )</I> if we let <I>x</I> approach 2 from the right, but this by itself is not enough to establish continuity at 2. In case like this, the function is called continuous from the right at 2 and discontinuous from the left at 2. Continuity at a point requires both continuity from the left and from the right.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> In the early development of calculus almost all functions that were dealt with were continuous and there was no real need at that time for a penetrating look into the exact meaning of continuity. It was not until late in the 18<SUP>th</SUP> century that discontinuous functions began appearing in connection with various kinds of physical problems. In particular, the work of J.B.J. Fourier(1758-1830) on the theory of heat forced mathematicians the early 19<SUP>th</SUP> century to examine more carefully the exact meaning of the word “continuity”.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> A satisfactory mathematical definition of continuity, expressed entirely in terms of properties of the real number system, was first formulated in 1821 by the French mathematician, Augustin-Louis Cauchy (1789-1857). His definition, which is still used today, is most easily explained in terms of the limit concept to which we turn now.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> The definition of the limit of a function.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> Let <I>f</I> be a function defined in some open interval containing a point <I>p</I>, although we do not insist that f be defined at the point <I>p</I> itself. Let <I>A</I> be a real number.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> The equation</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3> </FONT><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman" size=3> </FONT><I><FONT face="Times New Roman"><FONT size=3>f ( x ) = A<p></p></FONT></FONT></I></P>
<P ><FONT face="Times New Roman" size=3>is read “The limit of <I>f ( x )</I> , as <I>x</I> approached <I>p</I>, is equal to <I>A</I>”, or “<I>f ( x )</I> approached <I>A</I> as <I>x </I>approached <I>p</I>.” It is also written without the limit symbol, as follows:</FONT></P>
<P ><FONT size=3><I><FONT face="Times New Roman">f ( x )</FONT></I><I>→<FONT face="Times New Roman"> A</FONT></I><FONT face="Times New Roman"> as <I>x </I></FONT><I>→<FONT face="Times New Roman"> p<p></p></FONT></I></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> This symbolism is intended to convey the idea that we can make <I>f ( x )</I> as close to <I>A</I> as we please, provided we choose <I>x </I>sufficiently close to <I>p</I>.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> Our first task is to explain the meaning of these symbols entirely in terms of real numbers. We shall do this in two stages. First we introduce the concept of a neighborhood of a point, the we define limits in terms of neighborhoods.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> Definition of neighborhood of a point.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> Any open interval containing a point p as its midpoint is called a neighborhood of <I>p</I>.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> NOTATION. We denote neighborhoods by <I>N ( p ), N<SUB>1</SUB> ( p ), N<SUB>2</SUB> ( p )</I> etc. Since a neighborhood <I>N</I> <I>( p )</I> is an open interval symmetric about <I>p</I>, it consists of all real x satisfying <I>p-r < x < p+r</I> for some <I>r > 0</I>. The positive number <I>r</I> is called the radius of the neighborhood. We designate <I>N ( p )</I> by <I>N ( p; r )</I> if we wish to specify its radius. The inequalities <I>p-r < x < p+r</I> are equivalent to <I>–r<x-p<r,</I> and to </FONT><I>∣<FONT face="Times New Roman">x-p</FONT></I><I>∣<FONT face="Times New Roman">< r</FONT></I><FONT face="Times New Roman">. Thus <I>N ( p; r )</I> consists of all points <I>x</I> whose distance from <I>p</I> is less than <I>r</I>.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> In the next definition, we assume that <I>A</I> is a real number and that <I>f</I> is a function defined on some neighborhood of a point <I>p</I> (except possibly at <I>p</I> ) . The function may also be defined at <I>p</I> but this is irrelevant in the definition.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> Definition of limit of a function.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> The symbolism</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman"><FONT size=3><I>f ( x ) = A</I> or [<I> f ( x )</I> </FONT></FONT><FONT size=3><I>→<FONT face="Times New Roman"> A </FONT></I><FONT face="Times New Roman">as<I> x</I></FONT><I>→<FONT face="Times New Roman"> p </FONT></I><FONT face="Times New Roman">]<I> <p></p></I></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>means that for every neighborhood <I>N<SUB>1</SUB> ( A )</I> there is some neighborhood <I>N<SUB>2</SUB> ( p)</I> such that </FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <I>f ( x )</I> </FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A ) </I>whenever <I> x </I></FONT>∈<FONT face="Times New Roman"> <I>N<SUB>2</SUB> ( p ) </I>and<I> x </I></FONT>≠<I><FONT face="Times New Roman"> p (*)<p></p></FONT></I></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3><I> </I>The first thing to note about this definition is that it involves two neighborhoods,<I> N<SUB>1</SUB> ( A) </I>and </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3><I>N<SUB>2</SUB> ( p)</I> . The neighborhood <I>N<SUB>1</SUB> ( A)</I> is specified first; it tells us how close we wish <I>f ( x )</I> to be to the limit <I>A</I>. The second neighborhood, <I>N<SUB>2</SUB> ( p ),</I> tells us how close x should be to <I>p</I> so that <I>f ( x ) </I>will be within the first neighborhood <I>N<SUB>1</SUB> ( A)</I>. The essential part of the definition is that, for every <I>N<SUB>1</SUB> ( A),</I> no matter how small, there is some neighborhood <I>N<SUB>2</SUB> (p)</I> to satisfy (*). In general, the neighborhood <I>N<SUB>2</SUB> ( p)</I> will depend on the choice of <I>N<SUB>1</SUB> ( A). </I>A neighborhood <I>N<SUB>2</SUB> ( p )</I> that works for one particular <I>N<SUB>1</SUB> ( A) </I>will also work, of course, for every larger <I>N<SUB>1</SUB> ( A), </I>but it may not be suitable for any smaller <I>N<SUB>1</SUB> ( A).</I></FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> The definition of limit can also be formulated in terms of the radii of the neighborhoods </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"><I>N<SUB>1</SUB> ( A)</I> and<I> N<SUB>2</SUB> ( p )</I>. It is customary to denote the radius of <I>N<SUB>1</SUB> ( A) </I>by</FONT>ε<FONT face="Times New Roman">and the radius of <I>N<SUB>2</SUB> ( p)</I> by </FONT>δ<FONT face="Times New Roman">.The statement <I>f ( x )</I> </FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A ) </I>is equivalent to the inequality </FONT><I>∣</I><FONT face="Times New Roman">f ( x ) – A</FONT><I>∣</I><FONT face="Times New Roman"><</FONT>ε<FONT face="Times New Roman">,and the statement <I>x </I></FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A) ,x </I></FONT>≠<FONT face="Times New Roman"><I> p ,</I>is equivalent to the inequalities 0<I> <</I></FONT><I>∣<FONT face="Times New Roman"> x-p</FONT></I><I>∣</I><FONT face="Times New Roman"><</FONT>δ<FONT face="Times New Roman">. Therefore, the definition of limit can also be expressed as follows:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> The symbol </FONT></FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman"><FONT size=3><I>f ( x ) = A</I> means that for every</FONT></FONT><FONT size=3>ε<FONT face="Times New Roman">> 0, there is a</FONT>δ<FONT face="Times New Roman">> 0 such that</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> </FONT><I>∣<FONT face="Times New Roman">f ( x ) – A</FONT></I><I>∣</I><FONT face="Times New Roman"><</FONT>ε<FONT face="Times New Roman"> whenever 0 <</FONT><I>∣<FONT face="Times New Roman">x – p</FONT></I><I>∣</I><FONT face="Times New Roman"><</FONT>δ</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> “One-sided” limits may be defined in a similar way. For example, if <I>f ( x </I>) </FONT><I>→<FONT face="Times New Roman">A</FONT></I><FONT face="Times New Roman"> as <I>x</I></FONT><I>→<FONT face="Times New Roman"> p</FONT></I><FONT face="Times New Roman"> through values greater than <I>p</I>, we say that A is right-hand limit of <I>f</I> at <I>p</I>, and we indicate this by writing</FONT></FONT></P>
<P ><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><I><FONT face="Times New Roman"><FONT size=3>f ( x ) = A<p></p></FONT></FONT></I></P>
<P ><FONT face="Times New Roman" size=3>In neighborhood terminology this means that for every neighborhood <I>N<SUB>1</SUB> ( A) ,</I>there is some neighborhood <I>N<SUB>2</SUB>( p) </I>such that</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"><I>f ( x )</I> </FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A) </I>wheneve<I>r x </I></FONT>∈<FONT face="Times New Roman"><I> N<SUB>1</SUB> ( A) </I>and<I> x > p<p></p></I></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> Left-hand limits, denoted by writing <I>x</I></FONT><I>→<FONT face="Times New Roman"> p<SUP>-</SUP>, </FONT></I><FONT face="Times New Roman">are similarly defined by restricting <I>x </I>to values less than <I>p</I>.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> If f has a limit <I>A</I> at <I>p</I>, then it also has a right-hand limit and a left-hand limit at <I>p</I>, both of these being equal to <I>A</I>. But a function can have a right-hand limit at <I>p</I> different from the left-hand limit.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> The definition of continuity of a function.</FONT></FONT></P>
<P >
<P ><FONT size=3><FONT face="Times New Roman"><p></p></FONT></FONT></P><FONT size=3><FONT face="Times New Roman"></FONT></FONT></P> |
|