数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 7057|回复: 3

数学专业英语-Basic Concepts of the Theory of Sets

[复制链接]
发表于 2004-5-6 09:24:07 | 显示全部楼层 |阅读模式
< ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
< ><FONT face="Times New Roman" size=3>In discussing any branch of mathematics, be it analysis, algebra, or geometry, it is helpful to use the notation and terminology of set theory. This subject, which was developed by Boole and Cantor in the latter part of the 19<SUP>th </SUP>century, has had a profound influence on the development of mathematics in the 20<SUP>th</SUP> century. It has unified many seemingly disconnected ideas and has helped to reduce many mathematical concepts to their logical foundations in an elegant and systematic way. A thorough treatment of theory of sets would require a lengthy discussion which we regard as outside the scope of this book. Fortunately, the basic noticns are few in number, and it is possible to develop a working knowledge of the methods and ideas of set theory through an informal discussion . Actually, we shall discuss not so much a new theory as an agreement about the precise terminology that we wish to apply to more or less familiar ideas.</FONT></P>
< ><FONT face="Times New Roman" size=3>In mathematics, the word “set” is used to represent a collection of objects viewed as a single entity</FONT></P>
<P ><FONT face="Times New Roman" size=3>The collections called to mind by such nouns as “flock”, “tribe”, ‘crowd”, “team’, are all examples of sets, The individual objects in the collection are called elements or members of the set, and they are said to belong to or to be contained in the set. The set in turn ,is said to contain or be composed of its elements.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  We shall be interested primarily in sets of mathematical objects: sets of numbers, sets of curves, sets of geometric figures, and so on. In many applications it is convenient to deal with sets in which nothing special is assumed about the nature of the individual objects in the collection. These are called abstract sets. Abstract set theory has been developed to deal with such collections of arbitrary objects, and from this generality the theory derives its power.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  NOTATIONS. Sets usually are denoted by capital letters: A,B,C,….X,Y,Z ; elements are designated by lower-case letters: a, b, c,….x, y, z. We use the special notation </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">X</FONT>∈<FONT face="Times New Roman">S</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">To mean that “x is an element of S “or” x belongs to S”. If x does not belong to S, we write x</FONT>∈<FONT face="Times New Roman">S. When convenient ,we shall designate sets by displaying the elements in braces; for example </FONT>,<FONT face="Times New Roman">the set of positive even integers less than 10 is denoted by the symbol{2,4,6,8}whereas the set of all positive even integers is displayed as {2,4,6,…},the dots taking the place of “and so on”.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  The first basic concept that relates one set to another is equality of sets:</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <B> DEFINITION OF SET EQUALITY</B> Two sets A and B are said to be equal(or identical)if they consist of exactly the same elements, in which case we write A=B. If one of the sets contains an element not in the other ,we say the sets are unequal and we write A</FONT>≠<FONT face="Times New Roman">B.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  SUBSETS. From a given set S we may form new sets, called subsets of S. For example, the set consisting of those positive integers less than 10 which are divisible by 4(the set{4,8})is a subset of the set of all even integers less than 10.In general, we have the following definition.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <B> DEFINITION OF A SUBSET.</B>A set A is said to be a subset of a set B, and we write </FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>A</FONT><v:shapetype><FONT face="Times New Roman"><FONT size=3> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></FONT></FONT></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>B</FONT></P>
<P ><FONT face="Times New Roman" size=3>Whenever every element of A also belongs to B. We also say that A is contained in B or B contains A. The relation is referred to as set inclusion.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  The statement A</FONT></FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>B does not rule out the possibility that B</FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>A. In fact, we may have both A</FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>B and B</FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>A, but this happens only if A and B have the same elements. In other words, A=B if and only if A</FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>B and B</FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>A .</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  This theorem is an immediate consequence of the foregoing definitions of equality and inclusion. If A</FONT></FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>B but A</FONT><FONT size=3>≠</FONT><FONT face="Times New Roman" size=3>B, then we say that A is a proper subset of B: we indicate this by writing A</FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>B.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  In all our applications of set theory, we have a fixed set S given in advance, and we are concerned only with subsets of this given set. The underlying set S may vary from one application to another; it will be referred to as the universal set of each particular discourse.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  The notation </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                 {X</FONT>∣<FONT face="Times New Roman">X</FONT>∈<FONT face="Times New Roman">S. and X satisfies P}</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">will designate the set of all elements X in S which satisfy the property P. When the universal set to which we are referring id understood, we omit the reference to S and we simply write{X</FONT>∣<FONT face="Times New Roman">X satisfies P}.This is read “the set of all x such that x satisfies p.” Sets designated in this way are said to be described by a defining property For example, the set of all positive real numbers could be designated as {X</FONT>∣<FONT face="Times New Roman">X&gt;0};the universal set S in this case is understood to be the set of all real numbers. Of course, the letter x is a dummy and may be replaced by any other convenient symbol. Thus we may write </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">{x</FONT>∣<FONT face="Times New Roman">x&gt;0}={y</FONT>∣<FONT face="Times New Roman">y&gt;0}={t</FONT>∣<FONT face="Times New Roman">t&gt;0}</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>and so on .</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  It is possible for a set to contain no elements whatever. This set is called the empty set or the void set, and will be denoted by the symbol</FONT>φ<FONT face="Times New Roman">.We will consider </FONT>φ<FONT face="Times New Roman">to be a subset of every set. Some people find it helpful to think of a set as analogous to a container(such as a bag or a box)containing certain objects, its elements. The empty set is then analogous to an empty container.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  To avoid logical difficulties, we must distinguish between the element x and the set {x} whose only element is x ,(A box with a hat in it is conceptually distinct from the hat itself.)In particular, the empty set</FONT>φ<FONT face="Times New Roman">is not the same as the set {</FONT>φ<FONT face="Times New Roman">}.In fact, the empty set </FONT>φ<FONT face="Times New Roman">contains no elements whereas the set {</FONT>φ<FONT face="Times New Roman">} has one element </FONT>φ<FONT face="Times New Roman">(A box which contains an empty box is not empty).Sets consisting of exactly one element are sometimes called one-element sets.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  <B>UNIONS,INTERSECTIONS</B>, COMPLEMENTS. From two given sets A and B, we can form a new set called the union of A and B. This new set is denoted by the symbol</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">A</FONT>∪<FONT face="Times New Roman">B(read: “A union B”)</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">And is defined as the set of those elements which are in A, in B, or in both. That is to say, A</FONT>∪<FONT face="Times New Roman">B is the set of all elements which belong to at least one of the sets A,B.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  Similarly, the intersection of A and B, denoted by</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">A</FONT>∩<FONT face="Times New Roman">B(read: “A intersection B”)</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Is defined as the set of those elements common to both A and B. Two sets A and B are said to be disjoint if A</FONT>∩<FONT face="Times New Roman">B=</FONT>φ<FONT face="Times New Roman">.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  If A and B are sets, the difference A-B (also called the complement of B relative to A)is defined to be the set of all elements of A which are not in B. Thus,  by definition,</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>A-</FONT>     <FONT size=3>B={X|X</FONT></FONT><FONT size=3>∈</FONT><FONT face="Times New Roman" size=3>A and X</FONT><v:shape><FONT face="Times New Roman"><FONT size=3> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>B}</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  The operations of union and intersection have many formal similarities with (as well as differences from) ordinary addition and multiplications of union and intersection, it follows that A</FONT>∪<FONT face="Times New Roman">B=B</FONT>∪<FONT face="Times New Roman">A and A</FONT>∩<FONT face="Times New Roman">B=B</FONT>∩<FONT face="Times New Roman">A. That is to say, union and intersection are commutative operations. The definitions are also phrased in such a way that the operations are associative:</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">(A</FONT>∪<FONT face="Times New Roman">B)</FONT>∪<FONT face="Times New Roman">C=A</FONT>∪<FONT face="Times New Roman">(B</FONT>∪<FONT face="Times New Roman">C)and(A</FONT>∩<FONT face="Times New Roman">B)</FONT>∩<FONT face="Times New Roman">C=A=</FONT>∩<FONT face="Times New Roman">(B</FONT>∩<FONT face="Times New Roman">C).</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  The operations of union and intersection can be extended to finite or infinite collections of sets.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
 楼主| 发表于 2004-5-6 09:24:30 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P>< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><A><B><FONT face="Times New Roman">Vocabulary</FONT></B></A></P>< 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Set </FONT>集合<FONT face="Times New Roman">                                          proper subset  </FONT>真子集</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Set theory </FONT>集合论<FONT face="Times New Roman">                                  universal set  </FONT>泛集</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Branch </FONT>分支<FONT face="Times New Roman">                                      empty set</FONT>空集<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Analysis </FONT>分析<FONT face="Times New Roman">                                      void set </FONT>空集</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Geometry </FONT>几何学<FONT face="Times New Roman">                                    union </FONT>并,并集</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Notation </FONT>记号,记法<FONT face="Times New Roman">                                intersection</FONT>交,交集</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Terminology </FONT>术语,名词表<FONT face="Times New Roman">                           complement</FONT>余,余集</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Logic </FONT>逻辑<FONT face="Times New Roman">                                         relative to</FONT>相对于</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Logical </FONT>逻辑的<FONT face="Times New Roman">                                     finite</FONT>有限的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Systematic </FONT>系统的<FONT face="Times New Roman">                                  disjoint</FONT>不相交</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Informal </FONT>非正式的<FONT face="Times New Roman">                                  infinite</FONT>无限的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Formal</FONT>正式的<FONT face="Times New Roman">                                       cardinal number</FONT>基数,纯数</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Entity </FONT>实在物<FONT face="Times New Roman">                                       ordinal number</FONT>序数</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Element </FONT>元素<FONT face="Times New Roman">                                        generality</FONT>一般性,通性</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Abstract set </FONT>抽象集<FONT face="Times New Roman">                                 subset</FONT>子集</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Designate  </FONT>指定,<FONT face="Times New Roman">                                   divisible</FONT>可除的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Notion </FONT>概念<FONT face="Times New Roman">                                         set inclusion </FONT>集的包含</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Braces   </FONT>大括号<FONT face="Times New Roman">                                   immediate consequence</FONT>直接结果</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Identical </FONT>恒同的,恒等的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> </FONT></P>
 楼主| 发表于 2004-5-6 09:24:51 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P>< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><FONT face="Times New Roman"><B>Notes</B><B><p></p></B></FONT></P>< 0cm 0cm 0pt; TEXT-INDENT: 189pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l45 level1 lfo6"><FONT face="Times New Roman">1.       In discussing any branch of mathematics, be it analysis, algebra, or geometry, it is helpful to use the notation and terminology of set theory.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">意思是:在讨论数学的任何分支时,无论是分析,代数或分析,利用集合论的记号和术语是有帮助的。</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt">这一句中<FONT face="Times New Roman">be it analysis, algebra, or geometry </FONT>是以<FONT face="Times New Roman">be</FONT>开头的状语从句,用倒装形式。类似的句子还有:</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">people will use the tools in further investigations, be it in mathematic, hysics , or what have you .</FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l45 level1 lfo6"><FONT face="Times New Roman">2.       Actually, we shall discuss not so much a new theory as an agreement about the precise terminology that we wish to more or less familiar ideas.</FONT></P><P 0cm 0cm 0pt 18pt">意思是:事实上,我恩将讨论的与其说是一种新理论,不如说是关于精确术语的一种约定,我们希望将它们应用到或多或少熟悉的思想上去。</P><P 0cm 0cm 0pt 18pt">注意:<FONT face="Times New Roman">not so much A as B </FONT>在这里解释为“与其说<FONT face="Times New Roman">A</FONT>不如说<FONT face="Times New Roman">B</FONT>。”类似的用法如:</P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: 32.25pt"><FONT face="Times New Roman">This is not so much a lecture as a friendly chat.</FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: 32.25pt"><FONT face="Times New Roman">(</FONT>与其说这是演讲不如说是朋友间的交谈。<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">3</FONT>.<FONT face="Times New Roman">Two sets A and B are said to be equal if they consist of exactly the same elements, in which case we write A=B.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">   </FONT>数学上常常在给定了定义后,就<FONT face="Times New Roman"> </FONT>用符号来表达。上面句子是常见句型。类似的表达法有:</P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> A set A is said to be a subset of a set B, and we write A=B whenever every element of A also belongs to B.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">  This set is called the empty set or the void set, and will be denoted by the symbol </FONT>Φ<FONT face="Times New Roman">.</FONT></P>
 楼主| 发表于 2004-5-6 09:25:07 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><FONT face="Times New Roman"><B>Exercise</B><B><p></p></B></FONT></P>< 0cm 0cm 0pt">ⅰ<FONT face="Times New Roman">. Turn the following mathematical expressions in English:</FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman">   </FONT>ⅰ<FONT face="Times New Roman">)x</FONT>∈<FONT face="Times New Roman">A</FONT>∪<FONT face="Times New Roman">B                        </FONT>ⅱ<FONT face="Times New Roman">)A</FONT>∩<FONT face="Times New Roman">B=</FONT>φ</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">   </FONT>ⅲ<FONT face="Times New Roman">)A={</FONT>Φ<FONT face="Times New Roman">}                         </FONT>ⅳ<FONT face="Times New Roman">)A={X: a&lt;x&lt;b}</FONT></P><P 0cm 0cm 0pt">ⅱ<FONT face="Times New Roman">.Let A ={2,5,8,11,14}     B={2,8,14}    C={2,8}</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt"><FONT face="Times New Roman">D={5,11}             E={2,8,11}</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt">ⅰ<FONT face="Times New Roman">)B,C,D and E are ____________of A.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt">ⅱ<FONT face="Times New Roman">)C is the ______________of B and E.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt">ⅲ<FONT face="Times New Roman">)A is the ______________of B and D.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt">ⅳ<FONT face="Times New Roman">)The intersection of B and D is ____________</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt"><FONT face="Times New Roman">Read the text carefully and then insert the insert the correct mathematical term in each of the blanks.</FONT></P><P 0cm 0cm 0pt">ⅲ<FONT face="Times New Roman">)Give the definition of each of the following:</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt"><FONT face="Times New Roman">1.A two_ element set.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt"><FONT face="Times New Roman">2.The difference set of A and B, where A and B are sets.</FONT></P><P 0cm 0cm 0pt">ⅳ<FONT face="Times New Roman">.Four statements are given below. Among them, there is one and only one statement that cannot be used to express the meaning of A</FONT>∩<FONT face="Times New Roman">B=</FONT>ф<FONT face="Times New Roman">.Point it out and give your reason.</FONT></P><P 0cm 0cm 0pt 50.25pt; TEXT-INDENT: -18pt; tab-stops: list 50.25pt; mso-list: l40 level1 lfo7"><FONT face="Times New Roman">a)       The intersection of A and B is zero.</FONT></P><P 0cm 0cm 0pt 50.25pt; TEXT-INDENT: -18pt; tab-stops: list 50.25pt; mso-list: l40 level1 lfo7"><FONT face="Times New Roman">b)      Set A does not intersect set B.</FONT></P><P 0cm 0cm 0pt 50.25pt; TEXT-INDENT: -18pt; tab-stops: list 50.25pt; mso-list: l40 level1 lfo7"><FONT face="Times New Roman">c)      The intersection of A and B is zero.</FONT></P><P 0cm 0cm 0pt 50.25pt; TEXT-INDENT: -18pt; tab-stops: list 50.25pt; mso-list: l40 level1 lfo7"><FONT face="Times New Roman">d)      Set A and set B are B are disjoint.</FONT></P><P 0cm 0cm 0pt">ⅴ<FONT face="Times New Roman">.Translate the following passage into Chinese:</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">   It was G.. Cantor who introduced the concept the concept of the set as an object of mathematical study. Cantor stated: “A set is a collection of definite, well_ distinguished  Objects of out intuition or thought. These objects are called the elements of the set. </FONT>“<FONT face="Times New Roman">cantor introduced the notions of cardinal and ordinal number and developed what is now known as Set Theory.</FONT></P><P 0cm 0cm 0pt">ⅵ<FONT face="Times New Roman">  Translate the following sentences into English:</FONT></P><P 0cm 0cm 0pt 39.75pt; TEXT-INDENT: -18pt; tab-stops: list 39.75pt; mso-list: l47 level1 lfo8"><FONT face="Times New Roman">1.  </FONT>若集<FONT face="Times New Roman">A </FONT>与集<FONT face="Times New Roman">B</FONT>均是集<FONT face="Times New Roman">C</FONT>的子集,则集<FONT face="Times New Roman">A</FONT>与集<FONT face="Times New Roman">B</FONT>的并集仍是集<FONT face="Times New Roman">C</FONT>的子集。</P><P 0cm 0cm 0pt 39.75pt; TEXT-INDENT: -18pt; tab-stops: list 39.75pt; mso-list: l47 level1 lfo8"><FONT face="Times New Roman">2.  </FONT>集<FONT face="Times New Roman">A</FONT>的补(余)集的补集是<FONT face="Times New Roman">A </FONT>。</P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-26 21:23 , Processed in 0.051350 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表