数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz

Mathematica入门教程

[复制链接]
 楼主| 发表于 2004-5-4 19:09:47 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"><B>. </B><B>微商和微分</B></FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>在</FONT><FONT size=3><FONT face="Times New Roman">Mathematica中能方便地计算任何函数表达式的任意阶微商(导数).如果f是一元函数,D[f,x]表示<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype></FONT></FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>;如果f是多元函数,D[f,x]表示</FONT><v:shape><FONT size=3><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></FONT></v:shape><FONT face="Times New Roman" size=3>.微商函数的常用形式如下:</FONT></P>< 0cm 0cm 0pt"><B><FONT face="Times New Roman">D[f,x] </FONT></B><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></P><H4 auto 0cm"><FONT face="Arial Unicode MS">In[1]:=D[x^x,x] </FONT></H4><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[1]:=</FONT><v:shape><FONT size=3><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></FONT></v:shape></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">下面列出全微分函数Dt的常用形式及其意义:</FONT></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"><B>Dt[f] </B>全微分<B> </B></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"><B>Dt[f,x] </B>全导数<B> </B></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"><B>Dt[f,x1,x2,…] </B>多重全导数</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[1]:=Dt[x^2+y^2]</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[1]:= </FONT></P>
 楼主| 发表于 2004-5-4 19:10:17 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"><B>. </B><B>不定积分和定积分</B></FONT></P><H4 auto 0cm auto 36pt; TEXT-INDENT: -18pt; tab-stops: list 36.0pt; mso-list: l0 level1 lfo1"><FONT face="Arial Unicode MS">1.</FONT>     不定积分<FONT face="Arial Unicode MS"> </FONT></H4>< 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman"><B>Integreate</B>函数主要计算只含有1“简单函数”的被积函数. “简单函数”包括有理函数、指数函数、对数函数和三角函数与反三角函数。不定积分一般形式如下:</FONT></FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman">Integrate[f,x] 计算不定积分</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Integrate[f,x,y] 计算不定积分</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Integrate[f,x,y,z] 计算不定积分<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype></FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[1]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[1]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[2]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><B><FONT face="Times New Roman" size=3>2.定积分</FONT></B></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">计算定积分的命令和计算不定积分是同一个<B>Integrate</B>函数,在计算定积分时,除了要给出变量外还要给出积分的上下限。当定积分算不出准确结果时,用<B>N[%]</B>命令总能得到其数值解<B>.Nintegrate</B>也是计算定积分的函数,其使用方法和形式和<B>Integrate</B>函数相同.用<B>Integrate</B>函数计算定积分得到的是准确解,<B>Nintegrate</B>函数计算定积分得到的是近似数值解.计算多重积分时,第一个自变量相应于最外层积分放在最后计算.</FONT></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Integrate[f,{x,a,b}] 计算定积分</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">NIntegrate[f,{x,a,b}] 计算定积分</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Integrate[f,{x,a,b},{y,c,d}] 计算定积分</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">NIntegrate[f,{x,a,b},{y,c,d}] 计算定积分</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[1]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[1]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[2]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[3]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[3]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P>
 楼主| 发表于 2004-5-4 19:10:33 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"><B>. </B><B>幂级数</B></FONT></P>< 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">幂级数展开函数Series的一般形式:</FONT></FONT></P>< 0cm 0cm 0pt"><B><FONT face="Times New Roman" size=3>Series[expr,{x,x0,n}] 将expr在x=x0点展开到n阶的级数</FONT></B></P><P 0cm 0cm 0pt"><B><FONT face="Times New Roman" size=3>Series[expr,{x,x0,n},{y,y0,m}] 先对y展开到m阶再对x展开n阶幂级数</FONT></B></P><H4 auto 0cm">用Series展开后,展开项中含有截断误差<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape></H4><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[1]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[1]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[3]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[3]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P>
 楼主| 发表于 2004-5-4 19:10:53 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"><B>. </B><B>常微分方程</B></FONT></P><H4 auto 0cm">求解常微分方程和常微分方程组的函数的一般形式如下: </H4>< 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman"><B>Dsolve[eqns,y[x],x] </B>解y(x)的微分方程或方程组eqns,x为变量</FONT></FONT></P>< 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman"><B>Dsolve[eqns,y,x] </B>在纯函数的形式下求解</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman"><B>NDsolve[eqns,y[x],x,{xmin,xmax}] </B>在区间{xmin,xmax}上求解变量x的数的形式下求解常微分方程和常微分方程组eqns的数值解</FONT></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[1]:=</FONT><B><FONT size=3><FONT face="Times New Roman"> <v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype></FONT></FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[1]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>Out[2]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>In[3]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><H4 auto 0cm">Out[3]:= <v:shape><v:imagedata></v:imagedata></v:shape></H4>
 楼主| 发表于 2004-5-4 19:11:28 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"><B>.</B><B>线性代数</B></FONT></P><H3 auto 0cm auto 36pt; TEXT-INDENT: -18pt; tab-stops: list 36.0pt; mso-list: l0 level1 lfo1"><FONT face="Arial Unicode MS">1.</FONT>    定义向量和矩阵函数<FONT face="Arial Unicode MS"> </FONT></H3><H4 auto 0cm auto 36pt">定义一个矩阵,可用函数Table或Array.当矩阵元素能用一个函数表达式时,用函数Table在定义矩阵大小的同时也给每个矩阵元素定义确定的值.用函数Range只能定义元素为数值的向量.Array只能用于定义向量、矩阵和张量,并规定矩阵和张量的元素下标从1开始.Array的一般形式: Array[向量元素名,n,f] 定义下标从f开始的有n个元素的向量,当f是1时可省略. Array[矩阵元素名,{m,n}] 定义m行n列的矩阵.其中:矩阵元素名是一个标识符,表示矩阵元素的名称,当循环范围是{u,v,w}时定义一个张量. Table[表达式f,循环范围] 表达式f表示向量或矩阵元素的通项公式;循环范围定义矩阵的大小. 循环范围的一般形式:{循环变量名,循环初值,循环终值,循环步长}. 在Array或Table的循环范围表示方法略有区别.请在下面的实例中注意观察. </H4>< 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>In[1]:=</FONT><B><FONT size=3><FONT face="Times New Roman"> <v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype></FONT></FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P>< 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>Out[1]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>(*矩阵每一行元素用一对{}括起来*)</FONT></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>In[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>Out[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>In[3]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>(*IndentityMatrix[n]生成n维矩阵*)</FONT></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>Out[3]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>In[4]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>(*生成对角元素为表元素的对角矩阵*)</FONT></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>Out[4]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>In[5]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>(*TableForm[m]或MatrixForm[m]按矩阵形式输出m*)</FONT></B></P><P 0cm 0cm 0pt 36pt"><FONT face="Times New Roman" size=3>Out[5]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt 36pt"><FONT size=3><FONT face="Times New Roman">一个矩阵可用一个变量表示,如In[2]所示U是一个矩阵,则U[[I]]表示U的第I行的N个元素;Transpose[U][[j]]表示U的第J行的M个元素;U[[I,j]]或a[I,j]表示U的第I行第J列元素;U[[{i1,i2,…,ip},{j1,j2,…,jq}]]表示由行为{i1,i2,…,ip}和列为{j1,j2,…,jq}组成的子矩阵.</FONT></FONT></P>
 楼主| 发表于 2004-5-4 19:11:43 | 显示全部楼层
<H3 auto 0cm auto 36pt; TEXT-INDENT: -18pt; tab-stops: list 36.0pt; mso-list: l0 level1 lfo1"><FONT face="Arial Unicode MS">1.</FONT>    矩阵的运算符号和函数<FONT face="Arial Unicode MS"> </FONT></H3><TABLE auto auto auto 36pt; WIDTH: 410.25pt; mso-cellspacing: .7pt; mso-padding-alt: 4.75pt 4.75pt 4.75pt 4.75pt" cellSpacing=1 cellPadding=0 width=547 border=1><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm">表达式</H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><H4 auto 0cm">意义</H4></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">A+c</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%">< 0cm 0cm 0pt"><FONT face="Times New Roman">A为矩阵,c为标量,c与A中的每一个元素相加 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">A+B</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%">< 0cm 0cm 0pt"><FONT face="Times New Roman">A,B为同阶矩阵或向量,A与B的对应元素相加 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">cA</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%">< 0cm 0cm 0pt"><FONT face="Times New Roman">A为矩阵,c为标量,c与A中的每个元素相乘 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">U.V</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">向量U与V的内积 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">A.B</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">矩阵A与矩阵B相乘,要求A的列数等于B的行数 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Det[M]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵M的行列式的值 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Transepose[M]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">M的转置矩阵(<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype></FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman">或</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">) </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Inverse[M]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵</FONT><FONT face="Times New Roman">M的逆矩阵(</FONT><v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">) </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Eigenvalus[A]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵A的全部(准确解)特征值 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Eigenvalus[N[A]]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵A的全部(数值解)特征值 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Eigenvectors[A]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵A的全部(准确解)特征向量 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Eigenvectors[N[A]]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵A的全部(数值解)特征向量 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Eigensystem[A]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵A的所有(准确解)特征值和特征向量 </FONT></P></TD></TR><TR yes"><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm"><FONT face="Arial Unicode MS">Eigensystem[N[A]]</FONT></H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><P 0cm 0cm 0pt"><FONT face="Times New Roman">计算矩阵A的所有(数值解)特征值和特征向量 </FONT></P></TD></TR></TABLE>
 楼主| 发表于 2004-5-4 19:11:58 | 显示全部楼层
<H3 auto 0cm auto 36pt; TEXT-INDENT: -18pt; tab-stops: list 36.0pt; mso-list: l0 level1 lfo1"><FONT face="Arial Unicode MS">1.</FONT>    方程组求解函数<FONT face="Arial Unicode MS"> </FONT></H3><H4 auto 0cm">在Mathematica中用LinerSolve[A,B],求解满足AX=B的一个解.如果A的行列式不为零,那么这个解是方程组的唯一解; 如果A的行列式是零,那么这个解是方程组的一个特解,方程组的全部解由基础解系向量的线性组合加上这个特解组成. NullSpace[A]计算方程组AX=0的基础解系的向量表,用LinerSolve[A,B]和NullSpace[A]联手解出方程组AX=B的全部解. Mathematica中还有一个美妙的函数RowReduce[A],它对A的行向量作化间成梯形的初等线性变换.用RowReduce可计算矩阵的秩,判断向量组是线性相关还是线性无关和计算极大线性无关组等工作.</H4><TABLE 410.25pt; mso-cellspacing: .7pt; mso-padding-alt: 4.75pt 4.75pt 4.75pt 4.75pt" cellSpacing=1 cellPadding=0 width=547 border=1><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm">解方程组函数</H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%">< 0cm 0cm 0pt"><FONT face="Times New Roman">意义 </FONT></P></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm">RowReduce[A]</H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><H4 auto 0cm">作行的线性组合化简A,A为m行n列的矩阵</H4></TD></TR><TR><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%"><H4 auto 0cm">LinerSolve[A,B]</H4></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><H4 auto 0cm">求解满足AX=B的一个解,A为方阵</H4></TD></TR><TR yes"><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 27%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="27%">< 0cm 0cm 0pt"><FONT face="Times New Roman">NullSpace[A] </FONT></P></TD><TD #ece9d8; PADDING-RIGHT: 4.75pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 4.75pt; PADDING-BOTTOM: 4.75pt; BORDER-LEFT: #ece9d8; WIDTH: 73%; PADDING-TOP: 4.75pt; BORDER-BOTTOM: #ece9d8; BACKGROUND-COLOR: transparent" vAlign=top width="73%"><H4 auto 0cm">求解方程组AX=0的基础解系的向量表, A为方阵</H4></TD></TR></TABLE><><FONT face="Times New Roman" size=3>例</FONT><FONT size=3><FONT face="Times New Roman">:已知A=<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype></FONT></FONT><v:shape><v:imagedata></v:imagedata></v:shape><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman" size=3>,计算A的秩,计算AX=0的基础解系.</FONT><p></p></P><H4 auto 0cm"><FONT face="Arial Unicode MS">In[1]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Arial Unicode MS">In[2]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></H4><P><FONT face="Times New Roman" size=3>Out[2]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>(*显然,A的秩是2*)</FONT></B><p></p></P><H4 auto 0cm"><FONT face="Arial Unicode MS">In[3]:= </FONT><v:shape><v:imagedata></v:imagedata></v:shape></H4><P><FONT face="Times New Roman" size=3>Out[3]:=</FONT><B><FONT face="Times New Roman" size=3> </FONT><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman" size=3>(*A的两个线性无关解*)</FONT></B><p></p></P><H4 auto 0cm">  </H4>
 楼主| 发表于 2004-5-4 19:12:16 | 显示全部楼层
<><FONT face="Times New Roman"><B>五.程序流程控制 </B><FONT size=3> </FONT> <p></p></FONT></P><><FONT face="Times New Roman"><FONT size=3>  循环语句有For[赋初值,循环条件,增量语句,语句块]表示如果满足循环条件,则执行语句块和增量语句,直到不满足条件为止,While[test,block]表明如果满足条件test则反复执行语句块block,否则跳出循环,Do[block,{i,imin,imax,istep}]与前者功能是相同的。还有Goto[lab], Label[lab]提供了程序中无条件跳转,Continue[]和Break[]提供了继续循环或跳出循环的控制,Catch[语句块1]和Throw[语句块2]提供了运算中对异常情况的处理。另外,在程序中书写注释可以用一对"(*  *)"括起来,注释可以嵌套。</FONT> <p></p></FONT></P>
 楼主| 发表于 2004-5-4 19:12:25 | 显示全部楼层
<><FONT face="Times New Roman"><B>六.其他 </B><p></p></FONT></P><><FONT face="Times New Roman"><FONT size=3>  1. 使用帮助,Mathematica的帮助文件提供了Mathematica内核的基本用法的说明,十分详细,可以参照学习。 </FONT> <p></p></FONT></P><><FONT face="Times New Roman"><FONT size=3>  2. 你可以使用"? 符号名"或"??符号名"来获得关于该符号(函数名或其他)的粗略或详细介绍。符号名中还可以使用通配符,例如?M*,则系统将给出所有以M开头的关键词和函数名,再如??For将会得到关于For语句的格式和用法的详细情况。 </FONT> <p></p></FONT></P><P><FONT face="Times New Roman"><FONT size=3>  3. 在Mathematica的编辑界面中输入语句和函数,确认光标处于编辑状态(不断闪烁),然后按Insert键来对这一段语句进行求值。如果语句有错,系统将用红色字体给出出错信息,你可以对已输入的语句进行修改,再运行。如果运行时间太长,你可以通过Alt+.(Alt+句号)来中止求值。  </FONT> <p></p></FONT></P>  4. 对函数名不确定的,可先输入前面几个字母(开头一定要大写),然后按Ctrl+K,系统会自动补全该函数名。
发表于 2004-7-4 05:02:06 | 显示全部楼层
<a href="http://come.6to23.com/skyok2000/v1/pic/tianzh/tzh002.gif" target="_blank" >http://come.6to23.com/skyok2000/v1/pic/tianzh/tzh002.gif</A>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-27 08:33 , Processed in 0.103971 second(s), 12 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表