第10题 柯西的平均值定理Cauchy's Mean Theorem
求证n个正数的几何平均值不大于这些数的算术平均值.
第11题 伯努利幂之和的问题Bernoulli's Power Sum Problem
确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.
第12题 欧拉数The Euler Number
求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值.
第13题 牛顿指数级数Newton's Exponential Series
将指数函数ex变换成各项为x的幂的级数.
第14题 麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series
不用对数表,计算一个给定数的对数.
第15题 牛顿正弦及余弦级数Newton's Sine and Cosine Series
不用查表计算已知角的正弦及余弦三角函数.
第16题 正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series
在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.
试利用屈折排列推导正割与正切的级数.
第17题 格雷戈里的反正切级数Gregory's Arc Tangent Series
已知三条边,不用查表求三角形的各角.
第18题 德布封的针问题Buffon's Needle Problem
在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?
第19题 费马-欧拉素数定理The Fermat-Euler Prime Number Theorem
每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.
第34题 斯坦纳直尺问题Steiner's Straight-edge Problem
证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.
第35题 德里安倍立方问题The Deliaii Cube-doubling Problem
画出体积为一已知立方体两倍的立方体的一边.
第36题 三等分一个角Trisection of an Angle
把一个角分成三个相等的角.
第37题 正十七边形The Regular Heptadecagon
画一正十七边形.
第38题 阿基米德π值确定法Archimedes' Determination of the Number Pi
设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.
第39题 富斯弦切四边形问题Fuss' Problem of the Chord-Tangent Quadrilateral
找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)
第40题 测量附题Annex to a Survey
利用已知点的方位来确定地球表面未知但可到达的点的位置.
伯努利幂之和的问题Bernoulli's Power Sum Problem
确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.
第50题 彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem
确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.
蒙日问题Monge's Problem
画一个圆,使其与三已知圆正交.
第51题 作为包络的抛物线A Parabola as Envelope
从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.
求证具有相同数字的点的连线的包络为一条抛物线.
第89题 与欧拉数有关的斯坦纳问题Steiner's Problem Concerning the Euler Number
如果x为正变数,x取何值时,x的x次方根为最大?
第90题 法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem
在已知锐角三角形中,作周长最小的内接三角形.
第91题 费马对托里拆利提出的问题Fermat's Problem for Torricelli
试求一点,使它到已知三角形的三个顶点距离之和为最小.
第92题 逆风变换航向Tacking Under a Headwind
帆船如何能顶着北风以最快的速度向正北航行?
第93题 蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)
试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.
第94题 雷奇奥莫塔努斯的极大值问题Regiomontanus' Maximum Problem
在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)
第95题 金星的最大亮度The Maximum Brightness of Venus
在什么位置金星有最大亮度?
第96题 地球轨道内的慧星A Comet Inside the Earth's Orbit
慧星在地球的轨道内最多能停留多少天?
第97题 最短晨昏蒙影问题The Problem of the Shortest Twilight
在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?
第98题 斯坦纳的椭圆问题Steiner's Ellipse Problem
在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?
第99题 斯坦纳的圆问题Steiner's Circle Problem
在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.
反之:在有相等面积的所有平面图形中,圆有最小的周长.
第100题 斯坦纳的球问题Steiner's Sphere Problem
在表面积相等的所有立体中,球具有最大体积.
在体积相等的所有立体中,球具有最小的表面.