数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 3743|回复: 10

数 值 函 数

[复制链接]
发表于 2004-5-4 19:02:20 | 显示全部楼层 |阅读模式
< ><FONT size=3><FONT face="Times New Roman">N[expr]</FONT>表达式的机器精度近似值<FONT face="Times New Roman"> </FONT></FONT></P>
< ><FONT size=3><FONT face="Times New Roman">        N[expr, n]              </FONT>表达式的<FONT face="Times New Roman">n</FONT>位近似值,<FONT face="Times New Roman">n</FONT>为任意正整数<FONT face="Times New Roman"> </FONT></FONT></P>
< ><FONT size=3><FONT face="Times New Roman">        NSolve[lhs==rhs, var]   </FONT>求方程数值解<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        NSolve[eqn, var, n]     </FONT>求方程数值解,结果精度到<FONT face="Times New Roman">n</FONT>位<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        NDSolve[eqns, y, {x, xmin, xmax}]</FONT>微分方程数值解<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>        NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}] </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                                </FONT>微分方程组数值解<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        FindRoot[lhs==rhs, {x,x0}]      </FONT>以<FONT face="Times New Roman">x0</FONT>为初值,寻找方程数值解<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>        FindRoot[lhs==rhs, {x, xstart, xmin, xmax}] </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        NSum[f, {i,imin,imax,di}]       </FONT>数值求和,<FONT face="Times New Roman">di</FONT>为步长<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        NSum[f, {i,imin,imax,di}, {j,..},..]    </FONT>多维函数求和<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        NProduct[f, {i, imin, imax, di}]</FONT>函数求积<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        NIntegrate[f, {x, xmin, xmax}]  </FONT>函数数值积分<FONT face="Times New Roman"> </FONT></FONT></P>
 楼主| 发表于 2004-5-4 19:02:32 | 显示全部楼层
< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto">优化函数:<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        FindMinimum[f, {x,x0}]          </FONT>以<FONT face="Times New Roman">x0</FONT>为初值,寻找函数最小值<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        FindMinimum[f, {x, xstart, xmin, xmax}] </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        ConstrainedMin[f,{inequ},{x,y,..}] </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">          inequ</FONT>为线性不等式组,<FONT face="Times New Roman">f</FONT>为<FONT face="Times New Roman">x,y..</FONT>之线性函数,得到最小值及此时的<FONT face="Times New Roman">x,y..</FONT>取值<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        ConstrainedMax[f, {inequ}, {x, y,..}]</FONT>同上<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        LinearProgramming[c,m,b]        </FONT>解线性组合<FONT face="Times New Roman">c.x</FONT>在<FONT face="Times New Roman">m.x&gt;=b&amp;&amp;x&gt;=0</FONT>约束下的<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">                </FONT>最小值,<FONT face="Times New Roman">x,b,c</FONT>为向量<FONT face="Times New Roman">,m</FONT>为矩阵<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        LatticeReduce[{v1,v2...}]       </FONT>向量组<FONT face="Times New Roman">vi</FONT>的极小无关组<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman"> </FONT></P>
 楼主| 发表于 2004-5-4 19:02:46 | 显示全部楼层
< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto">数据处理:<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Fit[data,funs,vars]</FONT>用指定函数组对数据进行最小二乘拟和<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">                data</FONT>可以为<FONT face="Times New Roman">{{x1,y1,..f1},{x2,y2,..f2}..}</FONT>多维的情况<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">                emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x] </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Interpolation[data]</FONT>对数据进行差值<FONT face="Times New Roman">, </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">           data</FONT>同上,另外还可以为<FONT face="Times New Roman">{{x1,{f1,df11,df12}},{x2,{f2,.}..}</FONT>指定各阶导数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">           InterpolationOrder</FONT>默认为<FONT face="Times New Roman">3</FONT>次,可修改<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        ListInterpolation[array]</FONT>对离散数据插值,<FONT face="Times New Roman">array</FONT>可为<FONT face="Times New Roman">n</FONT>维<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..] </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">                </FONT>以对应<FONT face="Times New Roman">expr[xi,yi]</FONT>的为数据进行插值<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Fourier
               </FONT>对复数数据进行付氏变换<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        InverseFourier
          </FONT>对复数数据进行付氏逆变换<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Min[{x1,x2...},{y1,y2,...}]</FONT>得到每个表中的最小值<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Max[{x1,x2...},{y1,y2,...}]</FONT>得到每个表中的最大值<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Select[list, crit]      </FONT>将表中使得<FONT face="Times New Roman">crit</FONT>为<FONT face="Times New Roman">True</FONT>的元素选择出来<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Count[list, pattern]    </FONT>将表中匹配模式<FONT face="Times New Roman">pattern</FONT>的元素的个数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Sort
              </FONT>将表中元素按升序排列<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Sort[list,p]    </FONT>将表中元素按<FONT face="Times New Roman">p[e1,e2]</FONT>为<FONT face="Times New Roman">True</FONT>的顺序比较<FONT face="Times New Roman">list </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">                </FONT>的任两个元素<FONT face="Times New Roman">e1,e2,</FONT>实际上<FONT face="Times New Roman">Sort
          </FONT>中默认<FONT face="Times New Roman">p=Greater </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman"> </FONT></P>
 楼主| 发表于 2004-5-4 19:03:01 | 显示全部楼层
< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto">集合论:<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        <st1:place>Union</st1:place>[list1,list2..]            </FONT>表<FONT face="Times New Roman">listi</FONT>的并集并排序<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Intersection[list1,list2..]     </FONT>表<FONT face="Times New Roman">listi</FONT>的交集并排序<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Complement[listall,list1,list2...]</FONT>从全集<FONT face="Times New Roman">listall</FONT>中对<FONT face="Times New Roman">listi</FONT>的差集<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman"> </FONT></P>
 楼主| 发表于 2004-5-4 19:03:13 | 显示全部楼层
< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto">虚数函数<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Re[expr]                </FONT>复数表达式的实部<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Im[expr]                </FONT>复数表达式的虚部<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Abs[expr]               </FONT>复数表达式的模<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Arg[expr]               </FONT>复数表达式的辐角<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Conjugate[expr]         </FONT>复数表达式的共轭<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman"> </FONT></P>
 楼主| 发表于 2004-5-4 19:03:28 | 显示全部楼层
< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto">数的头及模式及其他操作<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Integer _Integer        </FONT>整数<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Real    _Real           </FONT>实数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Complex _Complex        </FONT>复数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Rational_Rational       </FONT>有理数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        (*</FONT>注:模式用在函数参数传递中,如<FONT face="Times New Roman">MyFun[Para1_Integer,Para2_Real] </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">          </FONT>规定传入参数的类型,另外也可用来判断<FONT face="Times New Roman">If[Head[a]==Real,...]*) </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        IntegerDigits[n,b,len]  </FONT>数字<FONT face="Times New Roman">n</FONT>以<FONT face="Times New Roman">b</FONT>近制的前<FONT face="Times New Roman">len</FONT>个码元<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        RealDigits[x,b,len]     </FONT>类上<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        FromDigits
            IntegerDigits</FONT>的反函数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Rationalize[x,dx]       </FONT>把实数<FONT face="Times New Roman">x</FONT>有理化成有理数,误差小于<FONT face="Times New Roman">dx </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Chop[expr, delta]       </FONT>将<FONT face="Times New Roman">expr</FONT>中小于<FONT face="Times New Roman">delta</FONT>的部分去掉<FONT face="Times New Roman">,dx</FONT>默认为<FONT face="Times New Roman">10^-10 </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Accuracy[x]             </FONT>给出<FONT face="Times New Roman">x</FONT>小数部分位数<FONT face="Times New Roman">,</FONT>对于<FONT face="Times New Roman">Pi,E</FONT>等为无限大<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Precision[x]            </FONT>给出<FONT face="Times New Roman">x</FONT>有效数字位数<FONT face="Times New Roman">,</FONT>对于<FONT face="Times New Roman">Pi,E</FONT>等为无限大<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        SetAccuracy[expr, n]    </FONT>设置<FONT face="Times New Roman">expr</FONT>显示时的小数部分位数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        SetPrecision[expr, n]   </FONT>设置<FONT face="Times New Roman">expr</FONT>显示时的有效数字位数<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman"> </FONT></P>
 楼主| 发表于 2004-5-4 19:03:38 | 显示全部楼层
< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto">区间函数<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Interval[{min, max}]    </FONT>区间<FONT face="Times New Roman">[min, max](* Solve[3 x+2==Interval[{-2,5}],x]*) </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        IntervalMemberQ[interval, x]            x</FONT>在区间内吗?<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        IntervalMemberQ[interval1,interval2]    </FONT>区间<FONT face="Times New Roman">2</FONT>在区间<FONT face="Times New Roman">1</FONT>内吗?<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        IntervalUnion[intv1,intv2...]           </FONT>区间的并<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        IntervalIntersection[intv1,intv2...]    </FONT>区间的交<FONT face="Times New Roman"> </FONT></P>
 楼主| 发表于 2004-5-4 19:03:52 | 显示全部楼层
< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto">矩阵操作<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        a.b.c </FONT>或<FONT face="Times New Roman"> Dot[a, b, c]   </FONT>矩阵、向量、张量的点积<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Inverse[m]              </FONT>矩阵的逆<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Transpose
             </FONT>矩阵的转置<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Transpose[list,{n1,n2..}]</FONT>将矩阵<FONT face="Times New Roman">list </FONT>第<FONT face="Times New Roman">k</FONT>行与第<FONT face="Times New Roman">nk</FONT>列交换<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Det[m]                  </FONT>矩阵的行列式<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Eigenvalues[m]          </FONT>特征值<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Eigenvectors[m]         </FONT>特征向量<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Eigensystem[m]          </FONT>特征系统,返回<FONT face="Times New Roman">{eigvalues,eigvectors} </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        LinearSolve[m, b]       </FONT>解线性方程组<FONT face="Times New Roman">m.x==b </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        NullSpace[m]            </FONT>矩阵<FONT face="Times New Roman">m</FONT>的零空间,即<FONT face="Times New Roman">m.NullSpace[m]==</FONT>零向量<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        RowReduce[m]            m</FONT>化简为阶梯矩阵<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Minors[m, k]            m</FONT>的所有<FONT face="Times New Roman">k*k</FONT>阶子矩阵的行列式的值<FONT face="Times New Roman">(</FONT>伴随阵,好像是<FONT face="Times New Roman">) </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        MatrixPower[mat, n]     </FONT>阵<FONT face="Times New Roman">mat</FONT>自乘<FONT face="Times New Roman">n</FONT>次<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Outer[f,list1,list2..]  listi</FONT>中各个元之间相互组合,并作为<FONT face="Times New Roman">f</FONT>的参数的到的矩阵<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        Outer[Times,list1,list2]</FONT>给出矩阵的外积<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        SingularValues[m]       m</FONT>的奇异值,结果为<FONT face="Times New Roman">{u,w,v}, </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">                m=Conjugate[Transpose].DiagonalMatrix[w].v </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        PseudoInverse[m]        m</FONT>的广义逆<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        QRDecomposition[m]      QR</FONT>分解<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        SchurDecomposition[m]   Schur</FONT>分解<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; mso-margin-top-alt: auto; mso-margin-bottom-alt: auto"><FONT face="Times New Roman">        LUDecomposition[m]      LU</FONT>分解</P>
发表于 2004-5-6 03:07:44 | 显示全部楼层
[em06]C语言、Matlab、Mathmatics?????在哪里用得上?
发表于 2004-5-6 05:12:55 | 显示全部楼层
怎么还没人啊?!
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-27 17:53 , Processed in 0.056874 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表