数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 14990|回复: 46

C语言解题经典程序(2)

[复制链接]
发表于 2004-5-14 08:32:21 | 显示全部楼层 |阅读模式

<  align=center><B>迭代法求方程的根  DIDAIROT.C<p></p></B></P>
< ><B>#include&lt;math.h&gt;<p></p></B></P>
< ><B>#include&lt;stdio.h&gt;<p></p></B></P>
<P ><B>double f(double x)<p></p></B></P>
<P ><B>{ return(2.0-log(x)); }<p></p></B></P>
<P ><B> <p></p></B></P>
<P ><B>double ca_root(double x0,double eps)<p></p></B></P>
<P ><B>{<p></p></B></P>
<P ><B>int n=0;  double x1;<p></p></B></P>
<P ><B>while(n&lt;800)<p></p></B></P>
<P ><B>    {<p></p></B></P>
<P ><B>    x1=f(x0);<p></p></B></P>
<P ><B>    if(fabs(x1-x0)&lt;eps)break;<p></p></B></P>
<P ><B>    x0=x1; n++;<p></p></B></P>
<P ><B>    }<p></p></B></P>
<P ><B>return(x1);<p></p></B></P>
<P ><B>}</B><p></p></P>
<P ><B>main()<p></p></B></P>
<P ><B>{<p></p></B></P>
<P ><B>double  root,  eps=1.0e-12;<p></p></B></P>
<P ><B>root=ca_root(1.0,eps);<p></p></B></P>
<P ><B>printf("\nThe root =%14.12lf",root);<p></p></B></P>
<P ><B>}<p></p></B></P><B>经过64次循环,计算结果为:1.557145598997</B>
 楼主| 发表于 2004-5-14 08:36:10 | 显示全部楼层
< center" align=center>二分法求方程的根  ROOT.C<p></p></P>< 22pt; mso-line-height-rule: exactly">#include&lt;math.h&gt;<p></p></P>< 22pt; mso-line-height-rule: exactly">#include&lt;stdio.h&gt;<p></p></P><P 22pt; mso-line-height-rule: exactly">double f(double x)<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">{<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">return(x+log(x)-2.0);<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">}<p></p></P><P 22pt; mso-line-height-rule: exactly">double ca_root(double a,double b,double eps)<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">{<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">int sg1,sg2,n=1; double x,fa,fx;<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">fa=f(a); sg1=(fa&gt;0.0) ? 1:-1;<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">for(;;)<p></p></P><P 22pt; mso-line-height-rule: exactly">    { <p></p></P><P 22pt; mso-line-height-rule: exactly">    x=0.5*(a+b);   fx=f(x);  if(fx==0.0)break;<p></p></P><P 22pt; mso-line-height-rule: exactly">    sg2=(fx&gt;0.0) ? 1:-1;  if(sg2==sg1)a=x;  else b=x;<p></p></P><P 22pt; mso-line-height-rule: exactly">    if(fabs(b-a)&lt;eps)break;  n++;<p></p></P><P 22pt; mso-line-height-rule: exactly">    }<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">printf("\nN=%d  ",n);  return(x);<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">}<p></p></P><P 22pt; mso-line-height-rule: exactly">main()<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">{<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">double eps=1.0e-12,root;<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">root=ca_root(1.0,2.0,eps);<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">printf("\nThe Root=%14.12lf",root);<p></p></P><P 12pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 1.0; mso-char-indent-size: 12.0pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly">经过40次循环,计算结果为:1.557145598998<p></p></P>
 楼主| 发表于 2004-5-14 08:37:30 | 显示全部楼层
< center" align=center><B>斐波那契法求函数的极大值fibona.c<p></p></B></P>< 22pt; mso-line-height-rule: exactly"><B>#include&lt;math.h&gt;<p></p></B></P>< 22pt; mso-line-height-rule: exactly"><B>#include&lt;stdio.h&gt;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>#include&lt;stdlib.h&gt;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B> <p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>double f(double x)<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>{<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>return(x*(2.0-log(x)));<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>}<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B> <p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>double fibona(double a,double b,double eps)<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>{<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>int n=1,i;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>double c,h,x1,x2,f1=1.0,f2,f0=1.0;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>c=(b-a)/eps;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>for(;;)<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  {<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  f2=f0+f1;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  if(f2&gt;=c)break;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  f0=f1;f1=f2;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  n++;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  }<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>c=(b-a)/f2;h=f0*c;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>x1=a+h;f1=f(x1);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>x2=b-h;f2=f(x2);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>for(i=n;i&gt;=2;i--)<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  {<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  if(f1&gt;=f2)<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    {<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    b=x2;h=x2-x1;x2=x1;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    f2=f1;x1=a+h;f1=f(x1);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    }<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  else<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    {<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    a=x1;h=x2-x1;x1=x2;f1=f2;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    x2=b-h;f2=f(x2);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>    }<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  if(fabs(x2-x1)&lt;eps)break;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>  }<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>return((a+b)*0.5);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>}<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B> <p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>main()<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>{<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>double mx=0.0,my=0.0;<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>mx=fibona(1.0,4.0,1.0e-8);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>my=f(mx);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>printf("\n Maxx=%14.12lf  Maxy=%14.12lf",mx,my);<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>getch();<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>}<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B>计算结果:<p></p></B></P><P 68.9pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 5.0; mso-char-indent-size: 13.75pt; mso-line-height-rule: exactly"><B>Maxx=2.718281828764<p></p></B></P><P 68.9pt; LINE-HEIGHT: 22pt; mso-char-indent-count: 5.0; mso-char-indent-size: 13.75pt; mso-line-height-rule: exactly"><B>Maxy=2.718281828459<p></p></B></P><P 22pt; mso-line-height-rule: exactly"><B> <p></p></B></P>
 楼主| 发表于 2004-5-14 08:43:10 | 显示全部楼层
< center" align=center>变步长改进欧拉法求微分方程的数值解  EULER.C<p></p></P>< 24pt; mso-line-height-rule: exactly">#include&lt;math.h&gt;<p></p></P>< 24pt; mso-line-height-rule: exactly">#include&lt;stdio.h&gt;<p></p></P><P 24pt; mso-line-height-rule: exactly"> <p></p></P><P 24pt; mso-line-height-rule: exactly">double f(double x,double y)<p></p></P><P 24pt; mso-line-height-rule: exactly">{  return(x*exp(-y));  }<p></p></P><P 24pt; mso-line-height-rule: exactly"> <p></p></P><P 24pt; mso-line-height-rule: exactly">double euler(double x0,double y0,double xn,unsigned long n)<p></p></P><P 24pt; mso-line-height-rule: exactly">{<p></p></P><P 24pt; mso-line-height-rule: exactly">unsigned  long k;  double  t,x,y,y1,h;<p></p></P><P 24pt; mso-line-height-rule: exactly">h=(xn-x0)/(double)n;  x=x0;  y=y0;<p></p></P><P 24pt; mso-line-height-rule: exactly">for(k=1;k&lt;=n;k++)<p></p></P><P 24pt; mso-line-height-rule: exactly">  {<p></p></P><P 24pt; mso-line-height-rule: exactly">  t=f(x,y);<p></p></P><P 24pt; mso-line-height-rule: exactly">  y1=y+h*t;  y1=y+h*0.5*(t+f(x+h,y1));<p></p></P><P 24pt; mso-line-height-rule: exactly">  x+=h;y=y1;<p></p></P><P 24pt; mso-line-height-rule: exactly">  }<p></p></P><P 24pt; mso-line-height-rule: exactly">return(y1);<p></p></P><P 24pt; mso-line-height-rule: exactly">}<p></p></P><P 24pt; mso-line-height-rule: exactly"> <p></p></P><P 24pt; mso-line-height-rule: exactly">double buzh(double x0,double y0,double xn,double eps)<p></p></P><P 24pt; mso-line-height-rule: exactly">{<p></p></P><P 24pt; mso-line-height-rule: exactly">int k=0; unsigned long m=64;<p></p></P><P 24pt; mso-line-height-rule: exactly">double y,y1;<p></p></P><P 24pt; mso-line-height-rule: exactly">y=euler(x0,y0,xn,m);<p></p></P><P 24pt; mso-line-height-rule: exactly">while(k&lt;20)<p></p></P><P 24pt; mso-line-height-rule: exactly">  {<p></p></P><P 24pt; mso-line-height-rule: exactly">  m*=2; y1=euler(x0,y0,xn,m);<p></p></P><P 24pt; mso-line-height-rule: exactly">  if(fabs(y1-y)&lt;eps)break;<p></p></P><P 24pt; mso-line-height-rule: exactly">  y=y1;k++; printf("\n  k=%u  y=%15.14lf",k,y1);<p></p></P><P 24pt; mso-line-height-rule: exactly">  }<p></p></P><P 24pt; mso-line-height-rule: exactly">return(y1);<p></p></P><P 24pt; mso-line-height-rule: exactly">}<p></p></P><P 24pt; mso-line-height-rule: exactly"> <p></p></P><P 24pt; mso-line-height-rule: exactly">main()<p></p></P><P 24pt; mso-line-height-rule: exactly">{<p></p></P><P 24pt; mso-line-height-rule: exactly">double x0=0.0,y0=0.0,answer,eps=1.0e-012;<p></p></P><P 24pt; mso-line-height-rule: exactly">printf("\nThe Answer is %15.14lf",log(13.5));<p></p></P><P 24pt; mso-line-height-rule: exactly">answer=buzh(x0,y0,5.0,eps);<p></p></P><P 24pt; mso-line-height-rule: exactly">printf("\nThe Answer is %15.14lf",answer);<p></p></P><P 24pt; mso-line-height-rule: exactly">}<p></p></P><P 24pt; mso-line-height-rule: exactly"> <p></p></P><P 24pt; mso-line-height-rule: exactly">循环14次,计算结果:<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P>
 楼主| 发表于 2004-5-14 08:44:54 | 显示全部楼层
<>/*改进坐标轮换法求多元函数极小值  DIRECT.C */</P><>#include&lt;conio.h&gt;</P><>#include&lt;math.h&gt;</P><P>#include&lt;stdio.h&gt;</P><P>#define N   2</P><P>int j;  double x[N];</P><P>double fun(double x[])</P><P>{</P><P>return(cos(x[0]*x[0])+x[0]-x[1]+2.0*x[0]*x[0]+2.0*x[0]*x[1]+x[1]*x[1]+log(1.0+x[1]*x[1]));</P><P>}</P><P>double fx(double y[],double lbt)</P><P>{</P><P>int i;</P><P>for(i=0;i&lt;N;i++)  x=y;  x[j]=y[j]+lbt;</P><P>return(fun(x));</P><P>}</P><P> <p></p></P><P>double fy(double y[],double lbt)</P><P>{</P><P>int i;  double x2[2];</P><P>for(i=0;i&lt;N;i++)  x2=x+lbt*y;</P><P>return(fun(x2));</P><P>}</P><P>double ca_min(double a,double b,double eps,double (*fun)(),double y[])</P><P>{</P><P>double c,x1,x2,x3,f1,f2,f3;</P><P>c=(b-a)*0.25;  x1=a+c;  f1=fun(y,x1);</P><P>x2=x1+c;  f2=fun(y,x2);  x3=x2+c;  f3=fun(y,x3);</P><P>for(;;)</P><P>  {</P><P>  if(f1&lt;=f2&amp;&amp;f1&lt;f3)</P><P>    {    b=x2;  x2=x1;  f2=f1;    }</P><P>  else if(f3&lt;=f2&amp;&amp;f3&lt;f1)</P><P>    {    a=x2;  x2=x3;  f2=f3;    }</P><P>  else</P><P>    {    a=x1;  b=x3;    }</P><P>  c=(b-a)*0.25;</P><P>  if(fabs(c)&lt;eps)break;</P><P>  x1=a+c;  f1=fun(y,x1);  x3=x2+c;  f3=fun(y,x3);</P><P>  }</P><P>return(x2);</P><P>}</P><P>int direct(double x0[],double eps)</P><P>{</P><P>int i; unsigned k=0;  double lbt,px,x1[N],y[N];</P><P>for(i=0;i&lt;N;i++)y=x0;</P><P>while(k&lt;200)</P><P>  {</P><P>  for(j=0;j&lt;N;j++)</P><P>    {</P><P>    lbt=ca_min(-1.0,1.0,eps*0.01,fx,y);    y[j]=y[j]+lbt;</P><P>    }</P><P>  px=0.0;</P><P>  for(i=0;i&lt;N;i++)</P><P>    {</P><P>    x=x1=y;    y=x1-x0;</P><P>    x0=x1;    px+=(y*y);</P><P>    }</P><P>  if(px&lt;eps)break;</P><P>    lbt=ca_min(-2.0,2.0,eps*0.1,fy,y);</P><P>  for(i=0;i&lt;N;i++) y=x1+lbt*y;</P><P>  k++;</P><P>  }</P><P>return(1);</P><P>}</P><P> <p></p></P><P>main()</P><P>{</P><P>int i;</P><P>double x0[N],eps=1.0e-014;</P><P>x0[0]=2.0;x0[1]=3.0;</P><P>direct(x0,eps);</P><P>printf("\nf(X) = %12.10lf  ",fun(x0));</P><P>  for(i=0;i&lt;N;i++)</P><P>    printf("\nx[%d] = %12.10lf  ",i,x0);</P><P>}</P>
 楼主| 发表于 2004-5-14 08:45:33 | 显示全部楼层
< 18pt; TEXT-ALIGN: center; mso-line-height-rule: exactly" align=center><B>黄金分割法求函数的极大值gold1.c<p></p></B></P>< 18pt; mso-line-height-rule: exactly"><B>#include&lt;math.h&gt;<p></p></B></P>< 18pt; mso-line-height-rule: exactly"><B>#include&lt;stdio.h&gt;<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>double f(double x)<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>{<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>return(x*sin(x));<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>}<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>double ca_max(double a,double b,double eps)<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>{<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>int n=0;<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>double c,x1,x2,f1,f2;<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>c=0.5*(sqrt(5.0)-1);<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>x1=a+c*(b-a);  f1=f(x1);  x2=a+b-x1;  f2=f(x2);<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>for(;;)<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>    {<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>    if(f1&lt;f2)<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      {<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      b=x1; x1=x2; f1=f2;<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      x2=b-c*(b-a); f2=f(x2);<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      }<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>    else if(f1&gt;f2)<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      {<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      a=x2;  x2=x1;  f2=f1;<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      x1=a+c*(b-a);  f1=f(x1);<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      }<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>    else<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      {<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      a=x2;  b=x1;  x1=a+c*(b-a);  x2=a+b-x1;<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      f1=f(x1);   f2=f(x2);<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>      }<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>    if(fabs(x1-x2)&lt;eps)break;<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>    n++;<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>    }<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>c=(x1+x2)*0.5;  printf("\nn=%d",n);<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>return(c);<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>}<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>main( )<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>{<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>double mx,my;<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>mx=ca_max(0.0,3.0,1.0e-10);  my=f(mx);<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>printf("\n Maxx=%14.12lf  Maxy=%14.12lf",mx,my);<p></p></B></P><P 11.8pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 1.0; mso-char-indent-size: 11.8pt"><B>}<p></p></B></P><P 18pt; mso-line-height-rule: exactly"><B>计算结果:循环次数:n=43<p></p></B></P><P 59.05pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 5.0; mso-char-indent-size: 11.8pt"><B>极大值点:Maxx=2.028757834797<p></p></B></P><P 59.05pt; LINE-HEIGHT: 18pt; mso-line-height-rule: exactly; mso-char-indent-count: 5.0; mso-char-indent-size: 11.8pt"><B>极大值:  Maxy=1.819705741160<p></p></B></P>
 楼主| 发表于 2004-5-14 08:46:24 | 显示全部楼层
< 1.2pt 0cm">程序一、计算圆周率π</P><>#include&lt;stdio.h&gt;<p></p></P><>main( )<p></p></P><P>  {<p></p></P><P>  double a,m=3.0,pi,n=1.0;<p></p></P><P>  a=1.0/3.0;pi=1.0+a;<p></p></P><P>  do<p></p></P><P>    {<p></p></P><P>    n+=1.0;  m+=2.0;<p></p></P><P>    a=a*n/m;  pi+=a;<p></p></P><P>    }while(a&gt;1.0e-10);<p></p></P><P>  printf("\npi=%14.12lf ",pi*2.0);<p></p></P><P>  }<p></p></P>
 楼主| 发表于 2004-5-14 08:46:46 | 显示全部楼层
< 1.2pt 0cm">程序二、计算任意正数的平方根</P><>#include&lt;stdio.h&gt;<p></p></P><>#include&lt;math.h&gt;<p></p></P><P>main( )<p></p></P><P>  {<p></p></P><P>  double a=3.0,x0=1.0,x1,b,eps=1.0e-10;<p></p></P><P>  printf(“Input a=?”);  scanf(“%lf”,&amp;a);<p></p></P><P>  for(;;)<p></p></P><P>    {<p></p></P><P>    x1=(x0+a/x0)*0.5;<p></p></P><P>    if(fabs(x1-x0)&lt;eps)break;<p></p></P><P>    x0=x1;<p></p></P><P>    }<p></p></P><P>  printf("\na=%g  The answer is %14.12lf",x1);<p></p></P><P>  }<p></p></P>
 楼主| 发表于 2004-5-14 08:53:23 | 显示全部楼层
< center" align=center>简化牛顿法解非线性方程组newton1.c<p></p></P>< 23pt; mso-line-height-rule: exactly">#include&lt;math.h&gt;<p></p></P>< 23pt; mso-line-height-rule: exactly">#include&lt;stdio.h&gt;<p></p></P><P 23pt; mso-line-height-rule: exactly">#define N   3<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">double pi,a[N][N],b[N][N],fx[N];<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">void F(double x[])<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">double ex,sx;<p></p></P><P 23pt; mso-line-height-rule: exactly">fx[0]=3.0*x[0]-cos(x[1]*x[2])-0.5;<p></p></P><P 23pt; mso-line-height-rule: exactly">fx[1]=x[0]*x[0]-81.0*(x[1]+0.1)*(x[1]+0.1)+sin(x[2])+1.06;<p></p></P><P 23pt; mso-line-height-rule: exactly">ex=exp(-x[0]*x[1]);<p></p></P><P 23pt; mso-line-height-rule: exactly">fx[2]=ex+20.0*x[2]+pi*10.0/3.0-1.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">void DF(double x[])<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">double ex,sx;<p></p></P><P 23pt; mso-line-height-rule: exactly">ex=exp(-x[0]*x[1]);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[0][0]=3.0;sx=sin(x[1]*x[2]);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[0][1]=x[2]*sx;a[0][2]=x[1]*sx;<p></p></P><P 23pt; mso-line-height-rule: exactly">a[1][0]=2.0*x[0];a[1][1]=-162.0*(x[1]+0.1);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[1][2]=cos(x[2]);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[2][0]=-x[1]*ex;a[2][1]=-x[0]*ex;<p></p></P><P 23pt; mso-line-height-rule: exactly">a[2][2]=20.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly">int inverta(int n)<p></p></P><P 23pt; mso-line-height-rule: exactly">  {<p></p></P><P 23pt; mso-line-height-rule: exactly">  int i,j,k,i0;  double c,t,maxa,eps=1.0e-15;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;n;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=0;j&lt;n;j++)<p></p></P><P 23pt; mso-line-height-rule: exactly">      if(j==i)b[j]=1.0;    else b[j]=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(k=0;k&lt;n;k++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    {<p></p></P><P 23pt; mso-line-height-rule: exactly">    maxa=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(i=k;i&lt;n;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">      {<p></p></P><P 23pt; mso-line-height-rule: exactly">      t=fabs(a[k]);<p></p></P><P 23pt; mso-line-height-rule: exactly">      if(t&gt;maxa)   {   maxa=t;i0=i;   }<p></p></P><P 23pt; mso-line-height-rule: exactly">      }<p></p></P><P 23pt; mso-line-height-rule: exactly">    if(maxa&lt;=eps)return(0);<p></p></P><P 23pt; mso-line-height-rule: exactly">    if(i0!=k)<p></p></P><P 23pt; mso-line-height-rule: exactly">      {<p></p></P><P 23pt; mso-line-height-rule: exactly">      for(j=0;j&lt;n;j++)<p></p></P><P 23pt; mso-line-height-rule: exactly">       {<p></p></P><P 23pt; mso-line-height-rule: exactly">       t=a[k][j];  c=b[k][j];<p></p></P><P 23pt; mso-line-height-rule: exactly">       a[k][j]=a[i0][j];  b[k][j]=b[i0][j];<p></p></P><P 23pt; mso-line-height-rule: exactly">       a[i0][j]=t;  b[i0][j]=c;<p></p></P><P 23pt; mso-line-height-rule: exactly">       }<p></p></P><P 23pt; mso-line-height-rule: exactly">      }<p></p></P><P 23pt; mso-line-height-rule: exactly">    c=1.0/a[k][k];<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=k;j&lt;n;j++)a[k][j]*=c;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=0;j&lt;n;j++)b[k][j]*=c;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(i=k+1;i&lt;n;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">      {<p></p></P><P 42pt; TEXT-INDENT: -42pt; LINE-HEIGHT: 23pt; mso-char-indent-count: -3.0; mso-char-indent-size: 14.0pt; mso-line-height-rule: exactly">      for(j=k+1;j&lt;n;j++) a[j]-=(a[k]*a[k][j]);<p></p></P><P 23pt; mso-line-height-rule: exactly">      for(j=0;j&lt;n;j++)  b[j]-=(a[k]*b[k][j]);<p></p></P><P 23pt; mso-line-height-rule: exactly">      }<p></p></P><P 23pt; mso-line-height-rule: exactly">    }<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(k=n-2;k&gt;=0;k--)<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(i=k;i&gt;=0;i--)<p></p></P><P 23pt; mso-line-height-rule: exactly">      for(j=0;j&lt;n;j++)b[j]-=(b[k+1][j]*a[k+1]);<p></p></P><P 23pt; mso-line-height-rule: exactly">  return(1);<p></p></P><P 23pt; mso-line-height-rule: exactly">  }<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">int  newtonfa(double x0[],double eps)<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">int i,j,k=1;<p></p></P><P 23pt; mso-line-height-rule: exactly">double mx;<p></p></P><P 23pt; mso-line-height-rule: exactly">double x1[N],dx[N],y[N];<p></p></P><P 23pt; mso-line-height-rule: exactly">DF(x0);<p></p></P><P 23pt; mso-line-height-rule: exactly">if(!inverta(N))return(0);<p></p></P><P 23pt; mso-line-height-rule: exactly">for(;;)<p></p></P><P 23pt; mso-line-height-rule: exactly">  {<p></p></P><P 23pt; mso-line-height-rule: exactly">  F(x0);<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    {<p></p></P><P 23pt; mso-line-height-rule: exactly">    dx=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=0;j&lt;N;j++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    dx+=b[j]*fx[j];<p></p></P><P 23pt; mso-line-height-rule: exactly">    }<p></p></P><P 23pt; mso-line-height-rule: exactly">  mx=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)if(fabs(dx)&gt;mx)mx=fabs(dx);<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)x1=x0-dx;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)x0=x1;<p></p></P><P 23pt; mso-line-height-rule: exactly">  if(mx&lt;eps)break;<p></p></P><P 23pt; mso-line-height-rule: exactly">    printf("\nk=%d",k);<p></p></P><P 23pt; mso-line-height-rule: exactly">    printf("\nx1=%12.10lf  x2=%12.10lf  x3=%12.10lf",x1[0],x1[1],x1[2]);<p></p></P><P 23pt; mso-line-height-rule: exactly">  k++;if(k&gt;400)return(0);<p></p></P><P 23pt; mso-line-height-rule: exactly">  }<p></p></P><P 23pt; mso-line-height-rule: exactly">return(1);<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">main()<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">int i;<p></p></P><P 23pt; mso-line-height-rule: exactly">double x0[N]={2.0,1.0,0.0},eps=1.0e-14;<p></p></P><P 23pt; mso-line-height-rule: exactly">pi=4.0*atan(1.0);<p></p></P><P 23pt; mso-line-height-rule: exactly">if(newtonfa(x0,eps))<p></p></P><P 23pt; mso-line-height-rule: exactly">  {<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    printf("\nx[%d] = %14.12lf  ",i,x0);<p></p></P><P 23pt; mso-line-height-rule: exactly">  }<p></p></P><P 23pt; mso-line-height-rule: exactly">else printf("\nFiled !");<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly">循环293次,计算结果:<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape><p></p></P>
 楼主| 发表于 2004-5-14 08:53:26 | 显示全部楼层
< center" align=center>简化牛顿法解非线性方程组newton1.c<p></p></P>< 23pt; mso-line-height-rule: exactly">#include&lt;math.h&gt;<p></p></P>< 23pt; mso-line-height-rule: exactly">#include&lt;stdio.h&gt;<p></p></P><P 23pt; mso-line-height-rule: exactly">#define N   3<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">double pi,a[N][N],b[N][N],fx[N];<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">void F(double x[])<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">double ex,sx;<p></p></P><P 23pt; mso-line-height-rule: exactly">fx[0]=3.0*x[0]-cos(x[1]*x[2])-0.5;<p></p></P><P 23pt; mso-line-height-rule: exactly">fx[1]=x[0]*x[0]-81.0*(x[1]+0.1)*(x[1]+0.1)+sin(x[2])+1.06;<p></p></P><P 23pt; mso-line-height-rule: exactly">ex=exp(-x[0]*x[1]);<p></p></P><P 23pt; mso-line-height-rule: exactly">fx[2]=ex+20.0*x[2]+pi*10.0/3.0-1.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">void DF(double x[])<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">double ex,sx;<p></p></P><P 23pt; mso-line-height-rule: exactly">ex=exp(-x[0]*x[1]);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[0][0]=3.0;sx=sin(x[1]*x[2]);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[0][1]=x[2]*sx;a[0][2]=x[1]*sx;<p></p></P><P 23pt; mso-line-height-rule: exactly">a[1][0]=2.0*x[0];a[1][1]=-162.0*(x[1]+0.1);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[1][2]=cos(x[2]);<p></p></P><P 23pt; mso-line-height-rule: exactly">a[2][0]=-x[1]*ex;a[2][1]=-x[0]*ex;<p></p></P><P 23pt; mso-line-height-rule: exactly">a[2][2]=20.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly">int inverta(int n)<p></p></P><P 23pt; mso-line-height-rule: exactly">  {<p></p></P><P 23pt; mso-line-height-rule: exactly">  int i,j,k,i0;  double c,t,maxa,eps=1.0e-15;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;n;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=0;j&lt;n;j++)<p></p></P><P 23pt; mso-line-height-rule: exactly">      if(j==i)b[j]=1.0;    else b[j]=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(k=0;k&lt;n;k++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    {<p></p></P><P 23pt; mso-line-height-rule: exactly">    maxa=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(i=k;i&lt;n;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">      {<p></p></P><P 23pt; mso-line-height-rule: exactly">      t=fabs(a[k]);<p></p></P><P 23pt; mso-line-height-rule: exactly">      if(t&gt;maxa)   {   maxa=t;i0=i;   }<p></p></P><P 23pt; mso-line-height-rule: exactly">      }<p></p></P><P 23pt; mso-line-height-rule: exactly">    if(maxa&lt;=eps)return(0);<p></p></P><P 23pt; mso-line-height-rule: exactly">    if(i0!=k)<p></p></P><P 23pt; mso-line-height-rule: exactly">      {<p></p></P><P 23pt; mso-line-height-rule: exactly">      for(j=0;j&lt;n;j++)<p></p></P><P 23pt; mso-line-height-rule: exactly">       {<p></p></P><P 23pt; mso-line-height-rule: exactly">       t=a[k][j];  c=b[k][j];<p></p></P><P 23pt; mso-line-height-rule: exactly">       a[k][j]=a[i0][j];  b[k][j]=b[i0][j];<p></p></P><P 23pt; mso-line-height-rule: exactly">       a[i0][j]=t;  b[i0][j]=c;<p></p></P><P 23pt; mso-line-height-rule: exactly">       }<p></p></P><P 23pt; mso-line-height-rule: exactly">      }<p></p></P><P 23pt; mso-line-height-rule: exactly">    c=1.0/a[k][k];<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=k;j&lt;n;j++)a[k][j]*=c;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=0;j&lt;n;j++)b[k][j]*=c;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(i=k+1;i&lt;n;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">      {<p></p></P><P 42pt; TEXT-INDENT: -42pt; LINE-HEIGHT: 23pt; mso-char-indent-count: -3.0; mso-char-indent-size: 14.0pt; mso-line-height-rule: exactly">      for(j=k+1;j&lt;n;j++) a[j]-=(a[k]*a[k][j]);<p></p></P><P 23pt; mso-line-height-rule: exactly">      for(j=0;j&lt;n;j++)  b[j]-=(a[k]*b[k][j]);<p></p></P><P 23pt; mso-line-height-rule: exactly">      }<p></p></P><P 23pt; mso-line-height-rule: exactly">    }<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(k=n-2;k&gt;=0;k--)<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(i=k;i&gt;=0;i--)<p></p></P><P 23pt; mso-line-height-rule: exactly">      for(j=0;j&lt;n;j++)b[j]-=(b[k+1][j]*a[k+1]);<p></p></P><P 23pt; mso-line-height-rule: exactly">  return(1);<p></p></P><P 23pt; mso-line-height-rule: exactly">  }<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">int  newtonfa(double x0[],double eps)<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">int i,j,k=1;<p></p></P><P 23pt; mso-line-height-rule: exactly">double mx;<p></p></P><P 23pt; mso-line-height-rule: exactly">double x1[N],dx[N],y[N];<p></p></P><P 23pt; mso-line-height-rule: exactly">DF(x0);<p></p></P><P 23pt; mso-line-height-rule: exactly">if(!inverta(N))return(0);<p></p></P><P 23pt; mso-line-height-rule: exactly">for(;;)<p></p></P><P 23pt; mso-line-height-rule: exactly">  {<p></p></P><P 23pt; mso-line-height-rule: exactly">  F(x0);<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    {<p></p></P><P 23pt; mso-line-height-rule: exactly">    dx=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">    for(j=0;j&lt;N;j++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    dx+=b[j]*fx[j];<p></p></P><P 23pt; mso-line-height-rule: exactly">    }<p></p></P><P 23pt; mso-line-height-rule: exactly">  mx=0.0;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)if(fabs(dx)&gt;mx)mx=fabs(dx);<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)x1=x0-dx;<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)x0=x1;<p></p></P><P 23pt; mso-line-height-rule: exactly">  if(mx&lt;eps)break;<p></p></P><P 23pt; mso-line-height-rule: exactly">    printf("\nk=%d",k);<p></p></P><P 23pt; mso-line-height-rule: exactly">    printf("\nx1=%12.10lf  x2=%12.10lf  x3=%12.10lf",x1[0],x1[1],x1[2]);<p></p></P><P 23pt; mso-line-height-rule: exactly">  k++;if(k&gt;400)return(0);<p></p></P><P 23pt; mso-line-height-rule: exactly">  }<p></p></P><P 23pt; mso-line-height-rule: exactly">return(1);<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly"> <p></p></P><P 23pt; mso-line-height-rule: exactly">main()<p></p></P><P 23pt; mso-line-height-rule: exactly">{<p></p></P><P 23pt; mso-line-height-rule: exactly">int i;<p></p></P><P 23pt; mso-line-height-rule: exactly">double x0[N]={2.0,1.0,0.0},eps=1.0e-14;<p></p></P><P 23pt; mso-line-height-rule: exactly">pi=4.0*atan(1.0);<p></p></P><P 23pt; mso-line-height-rule: exactly">if(newtonfa(x0,eps))<p></p></P><P 23pt; mso-line-height-rule: exactly">  {<p></p></P><P 23pt; mso-line-height-rule: exactly">  for(i=0;i&lt;N;i++)<p></p></P><P 23pt; mso-line-height-rule: exactly">    printf("\nx[%d] = %14.12lf  ",i,x0);<p></p></P><P 23pt; mso-line-height-rule: exactly">  }<p></p></P><P 23pt; mso-line-height-rule: exactly">else printf("\nFiled !");<p></p></P><P 23pt; mso-line-height-rule: exactly">}<p></p></P><P 23pt; mso-line-height-rule: exactly">循环293次,计算结果:<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape>,<v:shape> <v:imagedata></v:imagedata></v:shape><p></p></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-27 17:54 , Processed in 0.073416 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表