|
< ><FONT face="Times New Roman" size=3>George Polya has a scientific career extending more than seven decades. Abrilliant mathematician who has made fundamental contributions in many fields. Polya has also been a brilliant teacher, a teacher’s teacher and an expositor. Polya believes that there is a craft of discovery. He believes that the ability to discover and the ability to invent can be enchanced by skillful teaching which alerts the student to the principles of discovery and which gives him an opportunity to practise these principles.</FONT></P>
< ><FONT face="Times New Roman" size=3>In a series of remarkable books of great richness, the first of which was published in 1945. Polya has crystallized these principles of discovery and invention out of his vast experience, and has shared them with us both in precept and in example.These books are a treasure-trove of strategy, know-how, rules of thumb, good advice, anecdote, mathematical history, together with problem after problem at all levels and all of unusual mathematical interest. Polya places a global plan for “How to Solve It” in the endpapers of his book of that name:</FONT></P>
< ><FONT face="Times New Roman" size=3>HOW TO SOLVE IT</FONT></P>
<P ><FONT face="Times New Roman" size=3>First: You have to understand the problem.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Second: Find the connection between the data and the unknown. You may be obliged to consider auxiliary problems if an immediate connection cannot be found. You should obtain eventually a plan of the solution.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Third: Carry out your plan.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Fourth: Examine the solution obtained.</FONT></P>
<P ><FONT face="Times New Roman" size=3>These precepts are then broken down to “molecular” level on the opposite endpaper. There, individual strategies are suggested which might be called into play at appropriate momentsm, such as:</FONT></P>
<P ><FONT face="Times New Roman" size=3>If you cannot solve the proposed problem, look around for an appropriate related problem.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Work backwards</FONT></P>
<P ><FONT face="Times New Roman" size=3>Work forwards</FONT></P>
<P ><FONT face="Times New Roman" size=3>Narrow the condition</FONT></P>
<P ><FONT face="Times New Roman" size=3>Widen the condition</FONT></P>
<P ><FONT face="Times New Roman" size=3>Seek a counter example</FONT></P>
<P ><FONT face="Times New Roman" size=3>Guess and test</FONT></P>
<P ><FONT face="Times New Roman" size=3>Divide and conquer</FONT></P>
<P ><FONT face="Times New Roman" size=3>Change the conceptual mode</FONT></P>
<P ><FONT face="Times New Roman" size=3>Each of these heuristic principles is amplified by numerous appropriate examples.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Subsequent investigators have carried Polya’s ideas forward in a number of ways. A.H.Schoenfeld has made an interesting tabulation of the most frequently used heuristic principles in college-level mathematics. We have appended it here.</FONT></P>
<P align=center><FONT face="Times New Roman"> <p></p></FONT></P>
<P align=center><FONT face="Times New Roman">Frequently Used Heuristics<p></p></FONT></P>
<P align=center><B><FONT face="Times New Roman">Analysis<p></p></FONT></B></P>
<P ><FONT face="Times New Roman"><FONT size=3>1)</FONT> <FONT size=3>Draw a diagram if at all possible</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>2)</FONT> <FONT size=3>Examine special cases:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>a)</FONT> <FONT size=3>Choose special values to exemplify the problem and get a “feel” for it.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>b)</FONT> <FONT size=3>Examine limiting cases to explore the range of possibilities</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>c)</FONT> <FONT size=3>Set any integer parameters equal to 1,2,3,…,in sequence, and look for an inductive pattern.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>3)</FONT> <FONT size=3>Try to simplify the problem by</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>a)</FONT> <FONT size=3>exploiting symmetry, or</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>b)</FONT> <FONT size=3>“Without Loss of Generality” arguments (including scaling)</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P align=center><B><FONT face="Times New Roman">Exploration<p></p></FONT></B></P>
<P ><FONT face="Times New Roman"><FONT size=3>1)</FONT> <FONT size=3>Consider essentially equivalent problems:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>a)</FONT> <FONT size=3>Replacing conditions by equivalent ones.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>b)</FONT> <FONT size=3>Re-combining the elements of the problem in different ways.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>c)</FONT> <FONT size=3>Introduce auxiliary elements.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>d)</FONT> <FONT size=3>Re-formulate the problem by</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">I) change of perspective or notation</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">II) considering argument by contradiction or contrapositive</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">III) assuming you have a solution , and determining its properties</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>2)</FONT> <FONT size=3>Consider slightly modified problems:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>a)</FONT> <FONT size=3>Choose subgoals (obtain partial fulfillment of the conditions)</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>b)</FONT> <FONT size=3>Relax a condition and then try to re-impose it .</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>c)</FONT> <FONT size=3>Decompose the domain of the problem and work on it case by case .</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>3)</FONT> <FONT size=3>Consider broadly modified problems:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>a)</FONT> <FONT size=3>Construct an analogous problem with fewer variables .</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>b)</FONT> <FONT size=3>Hold all but one variable fixed to determine that variable’s impact .</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>c)</FONT> <FONT size=3>Try to exploit any related problems which have similar</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">I) form</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">II) “givens”</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">III) conclusions</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Remember: when dealing with easier related problems , you should try to exploit both the RESULT and the METHOD OF SOLUTION on the given problem .</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P align=center><B><FONT face="Times New Roman">Verifying your solution<p></p></FONT></B></P>
<P ><FONT face="Times New Roman"><FONT size=3>1)</FONT> <FONT size=3>Does your solution pass these specific tests:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>a)</FONT> <FONT size=3>Does it use all the pertinent data?</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>b)</FONT> <FONT size=3>Does it conform to reasonable estimates or predictions?</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>c)</FONT> <FONT size=3>Does it withstand tests of symmetry, dimension analysis , or scaling?</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>2)</FONT> <FONT size=3>Does it pass these general tests?</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>a)</FONT> <FONT size=3>Can it be obtained differently?</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>b)</FONT> <FONT size=3>Can it be sudstantiated by special cases?</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>c)</FONT> <FONT size=3>Can it be reduced to known results?</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>d)</FONT> <FONT size=3>Can it be used to generate something you know?</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P> |
|