|
楼主 |
发表于 2004-4-17 07:24:19
|
显示全部楼层
维数的增加
我的第二个主题有些不同,我称之为维数的增加.我们再次从经典的复变函数理论开始:经典复变函数论主要是详细讨论一个复变量理论并加以精炼.推广到两个或者更多个变量基本上发生在本世纪,并且是发生在有新现象出现的领域内.不是所有的现象都与一个变量的情形相同,这里有完全新的特性出现,并且n个变量的理论的研究越来越占有统治地位,这也是本世纪主要成就之一.
另一方面,过去的微分几何学家主要研究曲线和曲面,我们现在研究n维流形的几何,大家仔细想一想,就能意识到这是一个重要的转变.在早期,曲线和曲面是那些人们能真正在空间里看到的东西.而高维则有一点点虚构的成分,在其中人们可以通过数学思维来想象,但当时人们也许没有认真对待它们.认真对待它们并且用同样重视程度来研究它们的这种思想实际上是二十世纪的产物.同样地,也没有明显的证据表明我们十九世纪的先驱者们思考过函数个数的增加,研究不单单一个而是几个函数,或者是向量值函数(vector-valued function).所以我们看到这里有一个独立和非独立变量个数增加的问题.
线性代数总是涉及多个变量,但它的维数的增加更具有戏剧性,它的增加是从有限维到无穷维,从线性空间到有无穷个变量的Hilbert空间.当然这就涉及到了分析,在多个变量的函数之后,我们就有函数的函数,即泛函.它们是函数空间上的函数.它们本质上有无穷多个变量,这就是我们称为变分学的理论.一个类似的事情发生在一般(非线性)函数理论的发展中.这是一个古老的课题,但真正取得卓越的成果是在二十世纪.这就是我谈的第二个主题.
|
|