数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 4607|回复: 6

费尔马最后的定理

[复制链接]
发表于 2004-2-26 06:57:34 | 显示全部楼层 |阅读模式
这位隐身独处的天才有一种不可遏制的邪恶癖好,他和别人的通信其实
是一种智力上的挑逗。费尔马经常写信叙述他的最新定理,却不愿意透露任
何证明的线索,这种挑衅性的行为着实使收信人恼恨。在“费尔马最后的定
理”之后,数学宝库里还有黎曼猜想、哥德巴赫猜想和孪生素数猜想,还有
毕达哥拉斯时代遗留下来的完美数和友好数问题。这些问题或猜想有的难度
更大,有的历史更久,可是就传奇色彩来说,却没有一个比得上“费尔马最
后的定理”。

  英国哲学家怀特海把十七世纪称为“天才的世纪”。在那个世纪之初,
也即距今整整四百年前,诞生了伟大的法国数学家皮埃尔·德·费尔马。
  在费尔马之后,法国人帕斯卡尔、荷兰人惠更斯、英国人牛顿和德国人
莱布尼茨接连出世;而在费尔马之前,德国人开普勒、意大利人伽利略和法
国人笛卡尔生命中的大部分时光也是在十七世纪度过的。在这八位彪炳史册
的科学巨人中,惟有费尔马把他的全部才智奉献给了纯粹数学,即被牛顿斥
为“无意义的谜语的相互逗趣”的理论。与此相反,牛顿把他的数学应用于
物理世界,他对数学所作的惟一的划时代贡献就是创立了微积分,一门最初
仅用来描述与距离、速度和加速度有关的引力定律或力学定律的科学分支。
  虽然如此,并且随后又发生了与莱布尼茨的发明优先权之争(这场争论
使得英国和欧洲大陆学术交流中断了一个世纪),牛顿依然得以跻身历史上
最伟大的数学家之列。而在牛顿去世两百多年以后,有人才在他的一篇文章
中发现一个注记,原来他的微积分是在“费尔马先生画切线的方法”基础上
发展起来的。
  由此我们产生了一个疑问,为什么费尔马没有去走最后那并非最困难的
一步?与其说当时英国的工业革命已走在法国人的前面,倒不如说还有一项
事业更让费尔马倾心,即在任何时代都容易被认为毫无用处的数学分支——
——数论。如果再大胆一点,我们甚至可以推测费尔马当时已经预见到,微
积分的出现会扭转整个数学的研究方向,会把数学家们卷入到在他看来并不
太有趣的繁琐事务中去,因而他宁肯不要发明权这份荣誉。这个观点并非危
言耸听,假如考虑到那个被称为“费尔马大定理”或“费尔马最后的定理”
的谜语在他身后三百五十多年才得以揭开的话。
  费尔马出生在法国南部的小镇博蒙·德洛马涅,父亲是一位富有的皮革
商人,这使他有机会进入方济各会修道院学习,随后又来到附近的图卢兹大
学做事。三十岁那年,费尔马遵从家人的意愿,开始了文职官员的生涯,他
被任命为隶属图卢兹议会的上访接待室的法律顾问。费尔马的仕途颇为顺利
,很快成为当地有头有脸的人物,甚至有资格以德(de)作为姓氏的一部
分。可是,这并非他的雄心所致,而是当时蔓延欧洲的腺鼠疫帮了忙,幸存
者被提升去填补死亡者的空缺。
  费尔马如今被誉为“业余数学家之王”,这方面的兴趣和才能在他早年
所受教育里没有任何佐证。对他最有影响的导师是一部叫《算术》的古希腊
著作,那是古代世界最后一部重要的数学著作。作者是亚历山大里亚的丢番
图,其生活的年代已不可考,人们只能大致推断是在纪年前后的五百年间。
在躲过了基督教和伊斯兰教的双重劫难以后,包括欧几里德的《几何原本》
在内的希腊数学名著在十二世纪由阿拉伯文翻译成了拉丁文,那是数学史上
有名的翻译时代,阿拉伯和印度的数学成就也在这个时候被介绍到了西方,
其中尤以巴格达的花拉子密最负盛名,正是他命名了代数学。实际上,在欧
洲人放弃对高尚的真理追求的时候,阿拉伯人悄悄地把那些从亚历山大里亚
的余烬中拾取出来的知识汇总起来,并用新的更为有效的语言重新加以解释
和保存。
  奇怪的是,丢番图的《算术》却似乎从未进入过阿拉伯学者的视线,直
到1453年,土耳其人洗劫了君士坦丁堡,即那座如今横跨亚欧两大洲的
城市———伊斯坦布尔,这部书的一个希腊文残本才被逃往西方的拜占庭学
者带出。这场劫难与发生在图卢兹的那次鼠疫正好相隔了两个世纪,等到《
算术》终于被一位法国古典学者翻译成拉丁语并自费出版时,费尔马刚好满
二十岁,数学史上的一个重要角色注定要由他来扮演。
  费尔马担任的司法事务占据了他白天的工作时间,而夜晚和假日几乎全
被他用来研究数学了。部分原因是那个时候的法国反对法官们参加社交活动
,理由是朋友和熟人可能有一天被法庭传唤,与当地居民过分亲密会导致偏
袒。正是由于孤立于图卢兹上流社会的交际圈之外,费尔马才得以专心于他
的业余爱好。
  除了前面提到的因为切线及其极值点方法的使用被认为是微分学的创始
人以外,他还独立于笛卡尔发现了解析几何的基本原理,并通过和帕斯卡尔
的通信共同创立了概率论。甚至在光学方面,也有流传至今的所谓“费尔马
原理”,即光线永远沿使其经历的时间最短的路径行进。然而,所有这些工
作在费尔马心目中均不如他写在《算术》书页空边上的一系列短小的评注,
那些纯粹属于智力的数字游戏,他一直被一种强烈的欲望————想要了解
自然数的性质以及它们之间的相互关系———所驱使。 
  《算术》虽然成书在一千多年前,可是中间隔着漫长的中世纪,大量的
数学经典文献被完全遗忘了,费尔马得到此书一定如获至宝。书中提出了一
百多个数学问题,丢番图本人逐一予以解答,这种认真的做法却不是费尔马
的习惯。在研究丢番图的问题和解答时,费尔马经常得到启示去思索和解决
一些相关的微妙问题。令人庆幸的是,这部译著的每一页书边都留有宽大的
空白,有时候他会匆匆地在那里写下推理或评注。对于后世的数学家们来说
,这些不太详尽的注记成了用之不竭的一笔财富。
  像那个时代的大多数数学家一样,费尔马对自己的研究结果守口如瓶,
如果没有一个叫梅森的神父的竭力鼓动,他甚至可能不会与别的数学家通信
。这位神父不仅热衷探讨整数的性质(他以梅森素数在数学史上留芳),而
且喜欢旅行和传播消息,并定期安排数学家们的各种聚会,他的圈子后来形
成法兰西学院的雏形。不过,梅森也因为“泄密”得罪了笛卡尔那样的朋友
,可是,对于生活在边远山区的费尔马来说,神父的每次到访都是受欢迎的
,他的影响力大概仅次于丢番图的《算术》。
  尽管梅森神父一再鼓励,费尔马仍固执地拒绝发表自己的结果,他是个
缄默的天才,放弃了许多次成名的机会。得到人们的承认对他来说毫无意义
,惟有新的定理的发现带给他秘密的喜悦,这一点足以让他感到满足。然而
,这位隐身独处的天才有一种不可遏制的邪恶的癖好,他和别人的通信其实
是一种智力上的挑逗。费尔马经常写信叙述他的最新定理,却不愿意透露任
何证明的线索,这种挑衅性的行为着实使收信人恼恨,笛卡尔就指责他为“
吹牛者”,牛顿的前辈沃利斯则管他叫“那个该诅咒的法国佬”。费尔马尤
其喜欢捉弄海峡对岸的同行,因为直到他生活的年代,英国尚未产生过一位
可以和他媲美的数学家。六十四岁那年,费尔马到邻近的塔恩省的小镇卡斯
特尔执行公务,不幸染上一种严重的疾病去世。综观费尔马的一生,他的活
动范围不超过两百公里,这一点与佛陀释迦牟尼一样。
  著名的英国古典学者贡布里希爵士在谈到文艺复兴初期的意大利画家乔
托时指出,“在乔托之前,人们看待艺术家就像看待一个出色的木匠和裁缝
一样,他们甚至不在自己的作品上署名”。同样,当帕斯卡尔催促费尔马发
表某个结果时,他回答说,“不管我的哪项工作被确认值得发表,我也不想
在其中出现我的名字”。
  由于费尔马与巴黎的数学界不相往来,他的通信者对他未必怀有好感,
因此当他在梅森神父之后突然去世时,他的各种发现处于被永远遗失的危险
之中。幸亏费尔马的长子克莱蒙—塞缪尔(他对数学的贡献如同卡夫卡的遗
嘱执行人布罗德对文学的贡献)意识到父亲的业余爱好具有重要的价值,他
花了五年时间研读父亲涂写在页边的文字,整理出了48条评注。1670
年,一本叫《附有皮埃尔·德·费尔马评注的丢番图的算术》的书在图卢兹
出版了,而被后人称为“费尔马最后的定理”(费尔马从未与通信者提起过
)即为其中的第2条评注。
  数学家们奉行的保密原则起始于古希腊,早在公元前六世纪,神秘主义
哲学家毕达哥拉斯就严格禁止他的弟子们把数学发现泄密给外人,否则会招
来杀身之祸。
  毕氏学派最有意味的发现之一是所谓的“毕达哥拉斯定理”,即直角三
角形的两个直角边长的平方和等于斜边长的平方和。虽然中国人和巴比伦人
发现这个秘密比希腊人要早得多,可是他们都没能给出证明。而毕达哥拉斯
不仅予以严格的证明,并且从这个几何问题中提炼出有关整数的方程(后人
称之为丢番图方程),即如何将一个平方数写成两个平方数之和,他探讨了
满足这个方程的所有三元数组,其中最小的一组当然是(3,4,5)。在
丢番图的《算术》里,这个问题的编号是第8,正是在靠近问题8的页边上
,费尔马写下了下面这段文字:
  “不可能将一个立方数写成两个立方数之和,或者,将一个4次幂写成
两个4次幂之和,总之,不可能将一个高于2次的幂写成两个同次幂的数之
和。”
  在这个评注的后面,这位好恶作剧的遁世者又草草地写下一个附加的注
中之注:“对此命题我有一个非常美妙的证明,可惜此处的空白太小,写不
下来。”随着克莱蒙—塞缪尔所编的书的出版,这个问题在后来的三百多年
间闻名于世,同时也苦恼了一代又一代最有智慧的头脑,包括欧拉和柯西这
样伟大的数学家都曾经全身心地投入并栽了跟头。
  最后,在上个世纪行将结束之际,在费尔马的其他问题和评注全部解决
之后,一位叫安德鲁·怀尔斯的沉默寡言的英国人,澄清了这个历史疑案。
  怀尔斯是个幸运儿,他实际上证明的是以两位日本数学家名字命名的谷
山—志村猜想,后者可以直接导出费尔马大定理。值得一提的是,那两位日
本数学家在而立之年就完成了这项工作,他们属于最富创造力的一代,虽然
所受的教育经常被战争和疾病中断。1958年,年仅31岁的谷山在自己
的寓所自杀,那年怀尔斯才五岁。谷山的遗嘱表明,他对自己的生活失去了
信心,他至死都不知道自己工作的伟大意义。
  怀尔斯的证明动用了现代数学许多最深刻的结果和方法,这些工作中的
相当一部分都是受“费尔马最后的定理”的刺激发展起来的。现在,无人能
够做出预测。当这条惊人的消息从伦敦传出,我正在香港大学参加一个国际
学术会议,当代最伟大的数论学家、挪威出生的美国人赛尔伯格作完了一次
特邀报告,他念叨着那位年轻的普林斯顿同事的名字,脸上露出一丝难言的
笑容。四十多年前,赛尔伯格因为用初等方法证明了“素数定理”获得菲尔
兹奖,现在他终于要彻底退休了。
  自从牛顿和莱布尼茨发明微积分以后,数学的应用价值越来越为人们所
知,数学家们被迫去从事一些新领域的研究,这些领域包括从粒子物理到生
命科学,从航空技术到地质勘探等几乎一切应用学科。与此同时,在这个越
来越讲究实际的时代,以费尔马毕生钟爱的数论为代表的纯粹数学逐渐不为
人重视。或许是害怕被人冷落,数学家们每隔一段时间会抛出一条特大新闻
,于是费尔马的头像上了《纽约时报》的头版头条。
  在“费尔马最后的定理”之后,数学宝库里还有黎曼猜想、哥德巴赫猜
想和孪生素数猜想,还有毕达哥拉斯时代遗留下来的完美数和友好数问题。
这些问题或猜想有的难度更大,有的历史更久,可是就传奇色彩来说,却没
有一个比得上“费尔马最后的定理”。
  蔡天新,浙江大学数学系教授,博士生导师,著有诗集、散文集多种。

皮埃尔·德·费尔马
谷山丰,日本天才数学家,他与同事志村五郎的工作(即“谷山—志村猜想
”)为费尔马定理的证明架起了一座桥梁。
安德鲁·怀尔斯用七年时间最终证明了费尔马定理,他的证明动用了现代数
学的许多最为深刻的结果和方法。

--
  这是一个他和她的故事,他有他的痛苦,她有她的幸福,他有他的面具,她有
她的真实,他有他的同学,她有她的友谊,他有他的父母,她有她的家庭,他有爱
上她的故事,而她也有与他相识的故事。
发表于 2004-2-28 21:01:33 | 显示全部楼层
最后一段话是啥子意思??
发表于 2004-6-30 01:46:51 | 显示全部楼层
<><b><FONT color=#990000>Newton1983,我可以知道你的这些资料的来处吗</FONT></b></P><><b><FONT color=#990000>请务必给我答复,强烈想看</FONT></b></P><><b><FONT color=#990000>谢谢</FONT></b></P>[em01][em01]
 楼主| 发表于 2004-6-30 03:51:02 | 显示全部楼层
这些资料主要来自于网络,有的是bbs上的好帖,有的是从其他网站转贴的,但我觉得一个人的提高还是应该重视平时的积累。
发表于 2004-7-1 20:52:34 | 显示全部楼层
<>费马(1601~1665),法国数学家。他用业余时间研究数学,多数成果留在了手稿,通信或书页空白处。</P>
<>主要贡献有:在《平面与立体轨迹引论》中明确指出方程可以研究曲线,并可通过研究方程推断曲线性质,这就是解析几何的要旨;给出现代微积分中函数取极值的必要条件,提出求极大、极小和拐点的步骤以及求曲线所围图形的面积公式;概率论的创立者之一。</P>
<>个人认为,费马猜想跟这些成就比起来不算什么。</P>
[此贴子已经被作者于2004-7-1 16:11:54编辑过]

发表于 2004-7-1 21:54:29 | 显示全部楼层
你说的对!
发表于 2004-7-13 06:04:13 | 显示全部楼层
怀尔斯的数学水平很高,运气也很好。
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-26 22:28 , Processed in 0.056937 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表