数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 5103|回复: 3

分治法

[复制链接]
发表于 2004-1-7 05:47:51 | 显示全部楼层 |阅读模式
简介
对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。 分治法的基本思想
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治法的适用条件
分治法所能解决的问题一般具有以下几个特征:

该问题的规模缩小到一定的程度就可以容易地解决;
该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
利用该问题分解出的子问题的解可以合并为该问题的解;
该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

分治法的基本步骤
分治法在每一层递归上都有三个步骤:

分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:

下面的算法使用了伪代码进行描述,请参见伪代码的使用Divide-and-Conquer(P)
1.  if |P|≤n0
2.    then return(ADHOC(P))
3.  将P分解为较小的子问题 P1 ,P2 ,...,Pk
4.  for i←1 to k
5.    do yi ← Divide-and-Conquer(Pi)    △ 递归解决Pi
6.  T ← MERGE(y1,y2,...,yk)             △ 合并子问题
7.  return(T)

其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时,直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。

根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?各个子问题的规模应该怎样才为适当?这些问题很难予以肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取k=2。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。

分治法的复杂性分析
从分治法的一般设计模式可以看出,用它设计出的程序一般是一个递归过程。因此,分治法的计算效率通常可以用递归方程来进行分析。为方便起见,设分解阈值n0=1,且算法ADHOC解规模为1的问题耗费1个单位时间。又设分治法将规模为n的问题分成k个规模为n/m的子问题去解,而且,将原问题分解为k个子问题以及用算法MERGE将k个子问题的解合并为原问题的解需用f(n)个单位时间。如果用T(n)表示该分治法Divide-and-Conquer(P)解规模为|P|=n的问题P所需的计算时间,则有:

(1)



用算法的复杂性中递归方程解的渐进阶的解法介绍的解递归方程的迭代法,可以求得(1)的解:


注意,递归方程(1)及其解(2)只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常,我们可以假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

另一个需要注意的问题是,在分析分治法的计算效率时,通常得到的是递归不等式:
(3)

由于我们关心的一般是最坏情况下的计算时间复杂度的上界,所以用等于号(=)还是小于或等于号(≤)是没有本质区别的。

 楼主| 发表于 2004-1-7 05:49:14 | 显示全部楼层
分治法的几种变形
二分法 dichotomy

一种每次将原问题分解为两个子问题的分治法,是一分为二的哲学思想的应用。这种方法很常用,由此法产生了许多经典的算法和数据结构。

分解并在解决之前合并法 divide and marriage before conquest

一种分治法的变形,其特点是将分解出的子问题在解决之前合并。

管道传输分治法 pipelined divide and conquer

一种分治法的变形,它利用某种称为“管道”的数据结构在递归调用结束前将其中的某些结果返回。此方法经常用来减少算法的深度。

 楼主| 发表于 2004-1-7 05:49:50 | 显示全部楼层
分治法的实例分析 二分查找法 Binary Search
在对线性表的操作中,经常需要查找某一个元素在线性表中的位置。此问题的输入是待查元素x和线性表L,输出为x在L中的位置或者x不在L中的信息。

比较自然的想法是一个一个地扫描L的所有元素,直到找到x为止。这种方法对于有n个元素的线性表在最坏情况下需要n次比较。一般来说,如果没有其他的附加信息,在有n个元素的线性表中查找一个元素在最坏情况下都需要n次比较。

下面我们考虑一种简单的情况。假设该线性表已经排好序了,不妨设它按照主键的递增顺序排列(即由小到大排列)。在这种情况下,我们是否有改进查找效率的可能呢?

如果线性表里只有一个元素,则只要比较这个元素和x就可以确定x是否在线性表中。因此这个问题满足分治法的第一个适用条件;同时我们注意到对于排好序的线性表L有以下性质:

比较x和L中任意一个元素L,若x=L,则x在L中的位置就是i;如果x<L,由于L是递增排序的,因此假如x在L中的话,x必然排在L的前面,所以我们只要在L的前面查找x即可;如果x>L,同理我们只要在L的后面查找x即可。无论是在L的前面还是后面查找x,其方法都和在L中查找x一样,只不过是线性表的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。很显然此问题分解出的子问题相互独立,即在L的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。

于是我们得到利用分治法在有序表中查找元素的算法。

function Binary_Search(L,a,b,x);
begin
  if a>b then return(-1)
            else begin
                   m:=(a+b) div 2;
                   if x=L[m] then return(m)
                             else if x>L[m]
                                    then return(Binary_Search(L,m+1,b,x));
                                    else return(Binary_Search(L,a,m-1,x));
                  end;
end;
在以上算法中,L为排好序的线性表,x为需要查找的元素,b,a分别为x的位置的上下界,即如果x在L中,则x在L[a..b]中。每次我们用L中间的元素L[m]与x比较,从而确定x的位置范围。然后递归地缩小x的范围,直到找到x。

下面分析该算法的复杂性。设在n个元素的数组中查找x需要的比较次数为T(n),如果每次比较x和L[m]时,总有x<>L[m],即x根本不在L中,则:

T(n)=2+T(n/2),T(1)=1

该方程的解为T(n)=O(logn)。所以在最坏情况下二分查找法的复杂度为O(logn)。


发表于 2004-1-7 19:04:05 | 显示全部楼层
好东东哎!
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-27 02:43 , Processed in 0.124181 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表