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ABSTRACT

Harmonic analysis of 10 yr of Ocean Topography Experiment (TOPEX)/Poseidon (T/P) along-track al-

timetry is performed to derive the semidiurnal and diurnal tides (M2, S2, N2, K2, K1, O1, P1, and Q1) near

Hawaii. The T/P solutions are evaluated through intercomparison for crossover points of the ascending and

descending tracks and comparison with the data of tidal stations, which show that the T/P solutions in the

study area are reliable. By using a suitable order polynomial to fit the T/P solutions along every track, the

harmonic constants of any point on T/P tracks are acquired. A new fitting method, which is characterized by

applying the harmonics from T/P tracks to produce directly empirical cotidal charts, is developed. The har-

monic constants derived by this fitting method show good agreement with the data of tidal stations, the results

of National Astronomical Observatory 99b (NAO.99b), TOPEX/Poseidon 7.2 (TPXO7.2), and Finite Ele-

ment Solutions 2004 (FES2004) models, which suggests that the fitting method is reasonable, and the highly

accurate cotidal chart could be directly acquired from T/P altimetry data by this fitting method.

1. Introduction

The studies of tides and cotidal charts have a long

history. At the early stage, the cotidal charts of certain

sea areas mainly depended on observations at coastal

and island tidal gauge stations (e.g., Ogura 1933; Nishida

1980; Fang 1986), but the information of tides obtained

by these direct observation methods is very limited. Since

the launch of satellite altimetry Ocean Topography Ex-

periment (TOPEX)/Poseidon (T/P) in August 1992, which

provides unprecedented precise sea surface height data,

the study of ocean tides has progressed dramatically.

Especially in the past 10 yr, T/P altimeter data have

been widely used to study the distribution and charac-

teristics of ocean tides and build either a global or re-

gional tidal model. The first application of T/P altimeter

data covering about 7 months was carried out to derive

ocean tides in the Asian semi-enclosed sea by Mazzega

and Berge (1994). By interpolating the tidal variations

of the sea surface, Yanagi et al. (1997) used T/P altim-

eter data covering about 3 yr to construct cotidal charts

of eight tidal constituents in the Yellow and East China

Seas, showing significant improvement over Mazzega and

Berge’s work. Teague et al. (2000) evaluated the tides in

the Bohai and Yellow Seas derived from 5 yr of T/P data

through a comparison with data from in situ pressure

gauges and coastal tide stations, and their fairly good

agreement suggested that T/P could provide accurate

tide data in specific regions. Fang et al. (2004) applied

the tidal harmonics from T/P altimetry data covering

10 yr at coastal and island stations to give empirical

cotidal charts of five principal constituents in the Bohai,

Yellow, and East China Seas, showing higher accuracy

than the previous charts for the offshore area. They

acquired the harmonics at every grid point by using

quadratic polynomials to fit its surrounding data points

within a certain influence distance in the T/P track co-

ordinates. In short, the new methods have been emerging

in an endless stream and the study of ocean tides has also

significantly improved with the satellite altimeter data

increasing.

In this paper, we propose a new fitting method that is

quite different from other existing methods and models.

It does not depend on the complex dynamic system and

has nothing to do with models, so that terrible calcula-

tions are avoided. The method is characterized by ap-

plying the harmonics from T/P tracks to produce directly

empirical cotidal charts. Based on the continuity of har-

monic constants in space, we apply the harmonics on T/P

tracks to fit those between T/P tracks so that the har-

monics in the whole study areas can be estimated.
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The paper is organized as follows. Harmonic analysis

of 10 yr of T/P along-track altimetry is performed to derive

eight principal constituents near Hawaii, and the T/P solu-

tions are evaluated through an intercomparison for cross-

over points and a comparison with the data of tidal stations

in section 2. In section 3, harmonic constants of any point on

T/P tracks are acquired by using suitable-order polynomials

to fit T/P solutions along every track. In section 4, a new

fitting method, which is characterized by applying the har-

monics from T/P tracks to produce empirical cotidal charts,

is developed and evaluated through comparison with the

data from tidal stations, the results of the National Astro-

nomical Observatory 99b (NAO.99b), TOPEX/Poseidon 7.2

(TPXO7.2), and Finite Element Solutions 2004 (FES2004)

models. The paper ends with conclusions in section 5.

2. Harmonics derived from T/P altimeter data

The T/P altimeter data from October 1992 to June

2002 (2 ; 363 cycles), which we use in this paper, is pro-

vided by the National Aeronautics and Space Adminis-

tration (NASA). First, we process the approximately

10 yr of T/P altimeter data to gain the time series of tidal

elevations of each observation point on the tracks. Then,

we make use of this information to perform harmonic

analyses for deriving the harmonics. Considering that

too few observation times may lower the reliability of

harmonic analysis, we only select the points that have

more than 300 T/P observations.

a. Intercomparison of T/P-derived harmonics
at crossover points

There are in total 339 crossover points on the 54

ground tracks (27 ascending and 27 descending ground

tracks) within the study area, which are indicated by red

dots in Fig. 1. We carry out comparisons of harmonics at

339 crossover points for the eight principal constituents

(M2, S2, N2, K2, K1, O1, P1, and Q1). Because of the

limited space, we only give the RMS of amplitude dif-

ference and vector difference for 339 crossover points in

Table 1. The vector difference D between the ascending

and descending solutions (Fang et al. 2004) is defined by

D 5 [(H
a

cosG
a
�H

d
cosG

d
)2

1 (H
d

sinG
d
�H

d
sinG

d
)2]1/2, (1)

where the subscripts a and d represent ascending and

descending solutions, respectively.

From Table 1, we can see that the RMS of the am-

plitude difference for eight principal constituents is less

than 2 cm, and the maximum and minimum are 1.76

(K2 tide) and 0.69 (N2 tide) cm, respectively; the RMS of

vector difference is about 2 cm, and the maximum and

minimum are 2.51 (K1 tide) and 0.99 (S2 tide) cm, re-

spectively. These small differences indicate that the T/P

solutions we obtained above are reliable.

b. Comparison between T/P-derived harmonics
and the data of tidal stations

We download the sea level data of seven tidal stations

(online at http://www.soest.hawaii.edu/UHSLC/), which

are indicated by green triangles in Fig. 1, and we perform

harmonic analyses for them. The amplitude difference

and vectorial difference between the T/P solutions and

the data from the tidal stations for eight principal con-

stituents are listed in Tables 2 and 3.

From Tables 2 and 3, we can see that the RMS of the

amplitude difference for the eight principal constitu-

ents is less than 2 cm, for example, the maximum and

minimum are 1.73 (M2 tide) and 0.47 (N2 tide) cm,

respectively; the RMS of the vector difference for eight

principal constituents is less than 3; and the maximum and

minimum are 2.95 (M2 tide) and 0.99 (N2 tide) cm, re-

spectively. These comparisons validate the T/P solutions.

3. Acquisition of harmonics on T/P tracks

Cummins et al. (2001) separated the barotropic and

internal tide by using an eighth-order polynomial to fit

FIG. 1. Distributions of TOPEX/Poseidon ground tracks and

tidal stations near Hawaii. The T/P ground tracks (lines), T/P

crossover points (dots), islands (small dark areas), and (S1–S7)

tidal stations (triangles) are shown.

TABLE 1. RMS of amplitude difference and vector difference at

339 crossover points between harmonics derived from ascending

and descending tracks for eight principal constituents. Respec-

tively, DH and D represent amplitude difference and vector dif-

ference between them (cm).

M2 S2 N2 K2 K1 O1 P1 Q1

DH 0.76 0.96 0.69 1.76 1.67 0.83 1.05 0.91

D 1.06 0.99 1.03 1.20 2.51 1.16 1.65 1.44
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the 7 yr of T/P altimeter data in the North Pacific. Dushaw

(2002) used a 300-km running mean of the along-track

T/P altimeter data to filter near Hawaii, showing that the

result of filtering H cosG and H sinG, where H is am-

plitude and G is phase lag, is better than that of filtering

H and G.

Based on these previous studies, we use suitable-order

polynomials to fit the values of H cosG and H sinG

along every T/P track in this section, respectively. First,

transform amplitude H and phase lag G to the form

H cosG and H sinG. Then, use the nth (n 5 1, 2, 3, . . .)-

order polynomial to fit the values of H cosG and H sinG

along every track, respectively. Finally, the values of

amplitude H and phase lag G at any point on T/P tracks

can be acquired by coordinate transformation. Here, we

fit the values of HcosG for the M2 tide along a T/P track

as an example.

The polynomial is defined as

f̂ (y) 5 a
0

1 a
1
y 1 a

2
y2 1 � � � 1 a

n
yn, (2)

where y is the latitude of any point on the T/P track. The

cost function is

J(a
n
)5 �

N

k51
[(a

0
1a

1
y

k
1a

2
y2

k 1 � � �1a
n
yn

k)�H
k

cosG
k
]2,

(3)

where yk (k 5 1, 2, 3, . . . , N) is the latitude of obser-

vation point on the T/P track. Let the partial differential

with respect to the parameters a0, a1, a2, . . . , an of the

cost function equal to zero, and we obtain
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(4)

Let us introduce the following notations:

M
i, j

5 �
N

k51
y

i1 j�2
k , b

i
5 �

N

k51
yi�1

k H
k

cosG
k
,

i 5 1, 2, . . . , n 1 1, j 5 1, 2, . . . , n 1 1, (5)

Thus, Eq. (4) is rewritten as

TABLE 2. Amplitude difference and vector difference between the T/P solutions and the data of tidal stations for the M2, S2, N2, and K2

constituents (cm).

Station T/P Distance

(km)

M2 S2 N2 K2

8N/8E 8N/8E DH D DH D DH D DH D

S1 28.22/182.63 28.42/182.18 49.83 3.34 3.56 1.47 1.53 0.27 0.57 0.27 0.27

S2 16.75/190.48 16.50/191.08 69.48 2.60 2.62 0.96 1.02 0.76 0.76 1.82 2.11

S3 23.87/193.71 23.72/194.13 43.45 0.23 4.97 2.73 3.29 0.37 1.11 1.75 2.06

S4 21.96/200.64 21.76/200.77 25.29 0.29 0.29 1.58 1.74 0.02 2.65 0.08 0.92

S5 21.43/202.21 21.93/203.53 147.42 0.87 2.55 0.19 0.91 0.62 0.66 0.46 0.47

S6 20.90/203.53 21.16/203.87 44.86 1.49 1.56 0.59 0.72 0.57 0.59 0.53 0.56

S7 19.73/204.93 18.46/205.00 142.15 0.05 2.79 1.13 2.22 0.18 1.72 0.72 1.36

RMS 1.73 2.95 1.45 1.83 0.47 1.36 1.03 1.31

TABLE 3. As in Table 2, but for K1, O1, P1, and Q1 constituents.

Station T/P

Distance (km)

K1 O1 P1 Q1

8N/8E 8N/8E DH D DH D DH D DH D

S1 28.22/182.63 28.42/182.18 49.83 0.89 1.70 0.30 0.49 0.51 0.60 0.35 0.40

S2 16.75/190.48 16.50/191.08 69.48 0.24 1.17 0.83 0.83 0.44 0.68 1.20 1.55

S3 23.87/193.71 23.72/194.13 43.45 1.86 2.09 0.22 0.74 1.05 1.10 0.18 0.44

S4 21.96/200.64 21.76/200.77 25.29 0.58 0.85 1.38 1.49 0.20 1.24 0.71 0.84

S5 21.43/202.21 21.93/203.53 147.42 1.94 2.73 1.67 2.91 0.69 1.23 0.36 1.61

S6 20.90/203.53 21.16/203.87 44.86 0.97 2.22 1.09 1.19 1.27 1.31 0.93 0.93

S7 19.73/204.93 18.46/205.00 142.15 1.23 2.05 1.18 1.36 0.01 0.31 0.42 1.89

RMS 1.25 1.93 1.08 1.49 0.72 0.99 0.68 1.22
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(6)

The values of a0, a1, a2, . . . , an are obtained by solving the

above linear Eq. (6), and substituting these parameters

into Eq. (2) yields the values of the barotropic tide, that is,

f̂ (y) 5 a
0

1 a
1
y 1 a

2
y2 1 � � � 1 a

n
yn. (7)

Similarly, we can also get

ĝ(y) 5 a
0

1 a
1
y 1 a

2
y2 1 � � � 1 a

n
yn, (8)

by progressing the values of H sin G for the M2 tide with

the similar method.

According to the method above, we use 3rd–15th-order

polynomials to fit the values of H cosG and H sinG for

the M2 tide along every track, respectively. The mean

values of the amplitude difference and phase-lag differ-

ence of the M2 tide between the T/P solutions and har-

monics derived by polynomial fitting for all the tracks are

given in Table 4.

From Table 4, we can see that using a higher order in

polynomial fitting does not lead to a smaller difference.

The mean value of the amplitude difference for all of

the tracks by 10th-, 11th-, 12th-, and 14th-order poly-

nomial fitting are all equal to 0.49 cm, which are much

better than the other results. We can obviously see that

the mean value of the phase-lag difference for all of

the tracks by the 11th polynomial fitting is the smallest.

Thus, we choose the 11th-order polynomial to fit the

values of H cosG and H sinG for the M2 tide along

every track, respectively. Then, the values of H cosG

and H sinG for the M2 tide at any point on the tracks

are acquired.

4. Development of the fitting method

In this section, a new fitting method, which is char-

acterized by the application the harmonics from T/P

tracks to produce an empirical cotidal chart, is developed.

We select any point p in the study area. Based on the ratio

of the distances between this point and its two nearest

ascending (descending) tracks, a series of points on the

descending (ascending) tracks that have the same ratio

with this point between the two ascending (descending)

tracks are obtained. By fitting the harmonics of these

points with a suitable-order polynomial, the values of

amplitude and phase lag of this point p are acquired.

Here, we will describe this fitting method in detail.

a. Identify the four nearest tracks to point p

A series of quadrangles in the study area are sur-

rounded by ascending and descending tracks as shown

in Fig. 1. If we want to acquire the harmonic constants

of point p in the study area, we should first know the

quadrangle in which this point is located. Meanwhile,

the four nearest tracks to this point are identified.

As shown in Fig. 2, the necessary and sufficient

conditions for point p(x, y) located in the quadrangle

p1 p2 p3 p4 are

point p is below straight line p1p4 5 y , [(y4 2 y1)/

x4 2 x1](x 2 x1) 1 y1, point p is above straight line

p2 p3 5 y . [(y3 2 y2)/(x3 2 x2)](x 2 x3) 1 y3,

point p is above straight line p1p2 5 y . [(y2 2 y1)/

(x2 2 x1)](x 2 x2) 1 y2, and

point p is below straight line p3p4 5 y , [(y4 2 y3)/

(x4 2 x3)](x 2 x4) 1 y4.

If the above four conditions are satisfied, point p is

located in the quadrangle p1p2p3p4. The four nearest

tracks to point p, the ascending (i, i 1 1) and descending

( j, j 1 1) tracks, are identified.

TABLE 4. Comparisons of the mean value of the amplitude difference and phase-lag difference of the M2 tide between T/P solutions and

harmonics derived by polynomial fitting for all the tracks.

Order 3 4 5 6 7 8 9 10 11 12 13 14 15

H (cm) 0.72 0.61 0.55 0.70 0.52 0.51 0.50 0.49 0.49 0.49 0.64 0.49 0.56

G (8) 3.67 3.41 3.16 3.05 2.94 2.91 2.78 2.72 2.62 2.66 4.83 2.89 2.81

TABLE 5. Amplitude difference and vector difference between

harmonics derived from tidal stations and those obtained by this

fitting method for M2 tide (cm).

Station 8N/8E DH D

S1 28.22/182.63 2.02 2.62

S2 16.75/190.48 2.54 2.54

S3 23.87/193.71 0.09 1.62

S4 21.96/200.64 1.51 4.18

S5 21.43/202.21 1.30 3.96

S6 20.90/203.53 2.03 5.66

S7 19.73/204.93 3.09 3.10

RMS 2.01 3.60
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b. Calculate the distances between point p
and its four nearest tracks

According to the longitude and latitude of point p and

four vertices of its quadrangle, the distances between the

point and four sides are computed, which are the dis-

tances between this point and its four nearest tracks.

Here, we calculate the distance between point p and side

p1p2 as an example.

First, calculate the side length of Dpp1p4 according to

the distance formula of two points on the sphere

L 5 R � arc cos[sinb
1

sinb
2

1 cosb
1

cosb
2

cos(a
1
� a

2
)],

where R represents the radius of the earth, a1, a2 is the

longitude of two points, respectively, and b1, b2 is the

latitude of two points, respectively. The lengths of three

sides of Dpp1p4 are computed, respectively.

Second, calculate the area of Dpp1p4 according to

the area of a triangle

s 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l � pp

1
)(l � pp

4
)(l � p

1
p

4
)

q
, (9)

where l is half circumference of Dpp1p4 and the area of

Dpp1p4 is counted.

Third, calculate the distance between point p and side

p1p4; the area formula of Dpp1p4can be also expressed as

s 5 (d
1

3 p
1
p

4
)/2, (10)

where d1 is the distance between point p and side p1p4.

According to (9) and (10), the distance

d
1

5 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(l � pp

1
)(l � pp

4
)(l � p

1
p

4
)

q
/p

1
p

4
,

where l 5 (pp1 1 pp4 1 p1p4)/2 is reckoned.Similarly, we

can calculate the distances (d2, d3, d4) between point p

and the other three sides (p2 p3, p1p2, p3p4). Then, the

distances (d1, d2) between point p and its two nearest

ascending tracks (i, i 1 1) and the distances (d3, d4)

between point p and its two nearest descending tracks ( j,

j 1 1) are known (see Fig. 2).

c. Fit the harmonic constants of point p

For point p in the study area, it may be located on the

track or outside the track. If this point is on the track, the

harmonic constants of this point are obtained according

to the polynomials in the third part. Otherwise they are

acquired by the fitting method described below:

Step 1: As shown in Fig. 3, according to the ratio of the

distances between point p and its two nearest

ascending tracks, a series of points (pm, pm11, . . . ,

pj, pj11, . . . , pn) on these n 1 (m 2 1) descending

tracks that have the same ratio with point p be-

tween two adjacent ascending tracks are ac-

quired. For example, point pj on the descending

track ( j) is obtained by op
j

5 w
1

3 op
i, j

1 w
2

3

opi11, j, where o represents the origin of co-

ordinate, w1 5 d2/(d1 1 d2), and w2 5 d1/(d1 1 d2)

are the weight values between point p and as-

cending tracks (i, i 1 1), respectively.

Step 2: Based on polynomials in the third part, the

values of f̂ (y) and ĝ(y) of any point on the tracks

are acquired, where f̂ (y) 5 H cosG and ĝ(y) 5

H sinG. Thus, the values of Hj cosGj and Hj sinGj

(j 5 m, m 1 1, . . . , n) of the series of points (pm,

pm11, . . . , pj, pj11, . . . , pn) can be derived.

FIG. 2. Point p is located in the quadrangle p1p2p3p4 that is sur-

rounded by two adjacent ascending tracks (i, i 1 1) and two adja-

cent descending tracks ( j, j 1 1). Four vertices of the quadrangle

are p1(x1, y1), p2(x2, y2), p3(x3, y3), and p4(x4, y4), respectively; d1,

d2, d3, d4 are the distances between the point p and four sides ( p1p4,

p2p3, p1p2, p3p4), respectively.

FIG. 3. Point p is located between two adjacent ascending tracks

(i, i 1)1, and n 2 m 1 1 descending tracks (m, m 1 1, . . . , j, j 1 1, . . .

,n) pass through the two ascending tracks. A series of points pm,

pm11, . . . , pj, pj11, . . . , pn that have the same ratio with point p

between the two adjacent ascending tracks lie on the n 1 (m 2 1)

descending tracks, respectively.
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Step 3: We use 3rd–15th-order polynomials to fit the

values of Hj cosGj and Hj sinGj (j 5 m, m 1 1, . . . ,

n) of these n 2 (m 1 1) points, respectively, which

is similar to the third step. Based on the minimum

residual, we select the most suitable polynomials

as follow:

~f (y) 5 a
0

1 a
1
y 1 a

2
y2 1 � � � 1 a

l
yl and

~g(y) 5 a
0

1 a
1
y 1 a

2
y2 1 � � � 1 a

l
yl.

According to the two polynomials, the values of ~f ðyÞ
and ~gðyÞ of point p are acquired, where ~f (y) 5

H cosG and ~g(y) 5 H sinG. Finally, the values of the

amplitude H and phase lag G of point p are obtained

by coordinate transformation.

Similarly, the values of the amplitude and phase lag of

point p can be derived by fitting a series of points on the

ascending tracks between its two nearest descending

tracks.

TABLE 6. Amplitude difference and phase-lag difference between harmonics derived from models and those obtained by this fitting

method for the M2 tide.

Models

Data

points

DH (%) DG (%)

RMS (8) ,1 cm ,2 cm ,3 cm RMS (8) ,18 ,38 ,58

NAO99b 6077 1.99 31.9 57.6 89.2 2.44 50.1 82.9 94.1

TPXO7.2 24 617 1.89 32.0 62.8 90.5 3.17 51.1 83.2 94.8

FES2004 97 817 2.09 37.1 60.0 80.7 3.68 41.9 76.3 92.6

FIG. 4. Cotidal charts of the M2 tide near Hawaii obtained from (a) the NAO.99b model and (b) the fitting method,

and comparisons of (c) amplitude and (d) phase lag between them, with a spatial resolution of 0.58. Phase lag (8; solid

line) and amplitude (cm; dashed line) are shown.
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In a word, the harmonic constants of point p can be

acquired by fitting a series of points on the ascending

tracks between its two nearest descending tracks or on

the descending between its two nearest ascending tracks.

However, which one is selected to get the values of

amplitude and phase lag of point p depends on the

number of fitting points. If the number of fitting points

on the ascending tracks is more than that on the de-

scending tracks, the harmonics of point p are obtained

by fitting a series of points on the ascending tracks.

Otherwise, the harmonics of point p are derived by fit-

ting a series of points on the descending tracks.

d. Evaluation of the fitting method

The new fitting method cannot only be applied to

any open sea, but also can be popularized to any tide.

To evaluate this fitting method, we carry out compar-

isons of harmonic constants of the M2 tide derived

by this fitting method with the data of tidal stations,

the results of the NAO.99b, TPXO7.2, and FES2004

models.

1) COMPARISON WITH THE DATA OF

TIDAL STATION

We acquire the harmonic constants of the M2 tide at

seven tidal stations (see Fig. 1) by this fitting method and

carrying out a comparison with local harmonics. Table 5

gives the amplitude difference and the vectorial differ-

ence of the M2 tide between them. The last line is the

RMS of the amplitude difference and vectorial differ-

ence of the M2 tide for seven tidal stations.

From Table 5, we can see that the RMS of the am-

plitude difference and vector difference of the M2 tide at

seven tidal stations are 2.01 and 3.60 cm, respectively.

The minimum of the amplitude difference and vector

difference, which is shown at S3, are 0.09 cm and 1.62 cm,

respectively. Fairly good agreement with the data of tidal

stations validates the new fitting method.

2) COMPARISON WITH MODELS

The NAO.99b model, which is a global model repre-

senting 16 constituents with a spatial resolution of 0.58, is

developed by assimilating tidal solutions from about

FIG. 5. As in Fig. 4, but for the TPXO7.2 model with (d) a spatial resolution of 0.258.
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5 yr of T/P altimeter data into a barotropic hydrodynamic

model. Matsumoto et al. (2000) examined the accuracy of

the model using tide gauge data and a collinear residual

reduction test, which showed a comparable agreement

with 98 open-ocean tide gauge data as well as CSR4.0 and

GOT99.2b.

The TPXO7.2 model is a medium-resolution, 1/48 3 1/48

global model developed by G. Egbert and L. Erofeeva at

Oregon State University (OSU). It best fits, in a least

squares sense, the Laplace tidal equations and along-

track-averaged data from T/P and Jason-1 obtained with

OSU Tidal Inversion Software (OTIS). The methods

used to compute the model are described in detail by

Egbert et al. (1994) and further by Egbert and Erofeeva

(2002).

The FES2004 model, which is a global model re-

presenting 15 constituents with a spatial resolution of

0.1258, is the latest release in a series of finite-element

solutions tidal atlases that produced by the French tidal

group. Lyard et al. (2006) introduce the FES2004 tidal

atlas and validate the model against in situ and satellite

data.

Through the fitting method of this paper, we acquire

the harmonics of the M2 tide at the same grid point with

the three models above and conduct a detailed com-

parison with the results of the models, which is shown in

Table 6. Additionally, the cotidal charts of the M2 tide

derived from this fitting method and the models and the

deviation charts of amplitude and phase lag between

them are mapped in Figs. 4–6, respectively.

From Table 6, we can see that the RMS of the ampli-

tude differences between our data and the results from

the models are about 2 cm, and the amplitude differences

at 60% of the grid points are smaller than 2 cm; the RMS

of the phase-lag differences between them are about 38

and phase-lag differences at 80% of the points are smaller

than 38. From Figs. 4 to 6, the comparison of cotidal charts

shows that the amplitude lines basically have the same

trend; also, the agreement of the phase-lag lines is very

good. There is a good agreement between the cotidal

charts of the M2 tide obtained by the fitting method of this

paper and those derived from the NAO.99b, TPXO7.2,

and FES2004 models. Thus, the new fitting method is

believed to be reasonable.

FIG. 6. As in Fig. 4, but for the FES2004 model with (d) a spatial resolution of 0.1258.
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5. Conclusions

In this paper, harmonic analysis of 10 yr of T/P along-

track altimetry is performed to derive eight constituents’

harmonic constants near Hawaii. The intercomparison

between the T/P solutions of ascending and descending

tracks at crossover points shows that the mean RMS of

the amplitude variation DH are between 0.69 and

1.76 cm, and the mean RMS of the vector differences D

range from 0.99 to 2.51 cm, which validate the precision

of the T/P solutions in this study area. Based on these,

the harmonics of any point on the T/P tracks are ac-

quired by using suitable polynomials to fit the values of

H cosG and H sinG along every track. Then, we in-

troduce a new method to get harmonics between T/P

tracks by fitting the values of H cosG and H sinG on T/P

tracks so that the harmonics in the whole study areas can

be obtained. To evaluate this fitting method, we carry

out a series of comparisons of the M2 tide with the data

of tidal stations, the results of NAO.99b, TPXO7.2, and

FES2004 models. The results show that the RMS of the

amplitude differences between our data and the results

from models are about 2 cm; the RMS of the phase-lag

differences between them are about 38. In addition, the

comparison of cotidal charts shows that the amplitude

lines basically have the same trend; the agreement of

the phase-lag lines is also very good. Thus, the fitting

method is believed to be reasonable and the highly ac-

curate cotidal charts could be directly acquired from T/P

altimetry data by this fitting method.

The new fitting method can be applied to any tide in

the open sea. Compared with other existing methods

and models, the advantage of this method in our paper is

that the workload is greatly reduced, hence, leading to

the speeding up of the calculations significantly. It not

only adds to the ways to obtain cotidal charts, but also

popularizes the application of altimeter data.
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