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Abstract

We present and analyse a simple model for the twisting somersault. The model consists of a rigid body
with a rotor attached that can be switched on and off. This makes it simple enough to devise explicit
analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics
essential for twisting somersaults performed in springboard and platform diving. With “rotor on” and with
“rotor off” the corresponding Euler-type equations can be solved and the essential quantities characterising
the dynamics, such as the periods and rotation numbers, can be computed in terms of complete elliptic
integrals. We arrive at explicit formulas for how to achieve a dive with m somersaults and n twists in a
given total time. This can be thought of as a special case of a geometric phase formula due to Cabrera
(2007).
c⃝ 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

The analysis of the twisting somersault poses an interesting problem in classical mechanics.
How can a body take off in pure somersaulting motion, initiate twisting midflight, and then return
to pure somersaulting motion for entry into the water? Generally this is not a problem of rigid
body dynamics, but instead of either non-rigid body dynamics or the description of coupled rigid

∗ Corresponding author.
E-mail address: holger.dullin@sydney.edu.au (H.R. Dullin).

http://dx.doi.org/10.1016/j.indag.2016.04.003
0019-3577/ c⃝ 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/indag
http://dx.doi.org/10.1016/j.indag.2016.04.003
http://www.elsevier.com/locate/indag
mailto:holger.dullin@sydney.edu.au
http://dx.doi.org/10.1016/j.indag.2016.04.003


2 S. Bharadwaj et al. / Indagationes Mathematicae ( ) –

Fig. 1. A possible model of a rigid body (the box) and a disc that can be made to rotate about its symmetry axis. The
box models the head, trunk, and legs of a human diver, while the disc models the arms, which can “rotate”. In a robotic
realisation the disc would actually rotate. The top line shows how the reference configuration is transformed to the final
configuration by rotations about the initial axis. The bottom line shows how the same final configuration is reached by
rotating about the intermediate axes in the reversed order.

bodies. Such a description of the twisting somersault was first proposed by [6,7] and has since
been developed into a full-fledged analysis by Yeadon in a series of classical papers [14–18].
Here we are less ambitious in that we develop possibly the simplest model capable of exhibiting
this kind of behaviour. The advantage of our model is that it is simple enough to be completely
solved, thus allowing us to derive a precise equation that determines how exactly m somersaults
and n twists can be performed in the total time Ttot, if at all. The model of the diver consists
of a rigid body with a rotor attached. A rotation of the diver’s arms is then simply modelled by
switching the rotor on or off. The question we can answer is this: “When does the rotor need to be
turned on to initiate twisting, and for how long should it stay on, off, and then on again to stop the
twisting.?” From the dynamical systems point of view there are two autonomous systems (“rotor
on” and “rotor off”) that are switched between to achieve the desired trajectory. As such it is
a discontinuous dynamical system whose solution is at least continuous. Despite its simplicity,
the model appears to capture the essential features and even reasonable values of the parameters
that are relevant in human springboard and platform diving. Whether we can learn something
about human diving from this model – other than a rough idea of the fundamental principles –
remains to be seen. However, we would like to propose that the simple device we are describing
would make an interesting robot capable of performing twisting somersaults, potentially with
many more twists than humanly possible.

2. Euler equations for a rigid body with a rotor

Let l be the constant angular momentum vector in a space fixed frame, and L the angular
momentum vector in a reference frame moving with the body. Let R be the rotation matrix that
transforms from one frame into the other, so that l = RL. The equations of motion for a rigid
body with a rotor attached are well known, see e.g. [13,10,5,8,9]. Following Yeadon [16] we use
an adapted system of Euler angles R = R1(φ)R2(θ)R3(ψ) where Ri is a rotation that fixes the
i th axis, φ is the somersault angles, θ the tilt angle, and ψ the twist angle, see Fig. 1. This is the
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Euler-angle convention typically used in aerospace engineering where the angles are referred to
as pitch, yaw, and roll.

Theorem 1. The equations of motion for a rigid body with a rotating disc attached are given by

l

 cos θ cosψ
− cos θ sinψ

sin θ

 −

0
h
0

 =

I1 0 0
0 I2 0
0 0 I3

  cos θ cosψ sinψ 0
− cos θ sinψ cosψ 0

sin θ 0 1

 φ̇θ̇
ψ̇

 . (1)

Proof. We start with the general Euler equations as e.g. derived in [12],

L̇ = L × Ω, Ω = I −1(L − A), (2)

where L is the angular momentum in a body frame, I the tensor of inertia, and A the internal
angular momentum generated by the rotating disc, in the present case A = (0, h, 0)t . Using the
constancy of l we can write the equations of motion as

Rt l = IΩ + A (3)

where Ω is determined by R through Ω × v = Rt Ṙv for any vector v ∈ R3.
By choice of the space fixed coordinate system we may assume that l = (l, 0, 0)t . This means

that the space fixed coordinate system is oriented so that the 1-axis is pointing to the right, the
2-axis to the front, and the 3-axis upwards, see Fig. 1. With the above choice of Euler angles we
can find Ω as on the right hand side of (1) and similarly L = Rt l on the left hand side of (1). �

When the rotor is off we have h = 0 and hence the internal momentum A vanishes. In this
case the classical Euler equations are recovered. When the rotor is on we have non-zero h and
hence A is non-zero and constant, and the equations of motion are as given in Theorem 1.

Due to the circular symmetry of the disc the tensor of inertia I of the “diver” will be constant
regardless of the disc rotating or not. This is the essential simplification that makes this model
tractable. A general shape change instead induces a time-dependent angular momentum shift A
and a time-dependent tensor of inertia I .

Consider the caricature of a diver by a rectangular box (the trunk with legs and head attached,
all rigidly connected) with a disc attached as shown in Fig. 1. The reference configuration is such
that the 1-axis is pointing to the side of the body, the 2-axis out of the chest of the body, and the
3-axis up towards the head. The disc is attached so that it can rotate about an axis through the
chest. The idea is to use the rotating disc to model the rotational up/down motion of the arms
(and the hip and legs to a lesser extent). This will generate an internal angular momentum about
the 2-axis, so that when the disc is rotating we have A = (0, h, 0)t .

We have h = ωd Id where ωd is the angular velocity of the disc, and Id is its moment of inertia
for rotation about its symmetry axis. These parameters need to be chosen so that we have a rough
correspondence to the arm throw that initiates and stops the twisting motion. We estimate that
moving the arm from “up” to “down”, that is through an angle π takes at least 0.25 seconds,
so that ωd ≤ 4π . Modelling each arm by a solid cylinder gives a value of Id ≈ 2, roughly
one for each arm. It seems plausible to think of the disc as modelling the simultaneous motion
of both arms rotating in the same direction, remaining parallel. We note that these numbers are
just ballpark figures. As compared to the moments of inertia for the whole body, which we take
to be (I1, I2, I3) = (20, 21, 1) (with both arms up), the rule of thumb is that the moment of
inertia of the disc is similar to the moment of inertia for pure twisting of the whole body. These
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figures are computed from the model used in [12]. Much of our detailed analysis is done for
the symmetric case (20, 20, 1). In the general case we only consider I1 < I2, so that the initial
somersaulting takes place about the unstable axis of the body. Another ballpark figure to keep
in mind is l ≈ 2π · 20 for the angular momentum of the whole body, which corresponds to
the angular momentum necessary to perform one full somersault in one second. The fact that
the moments of inertia (20, 21, 1) correspond to a planar diver is not essential for our analysis,
increasing the smallest moment of inertia slightly so that the triangle inequality holds would not
result in any qualitative change.

Corollary 2. The equations of motion can be written as

φ′
= 1 + δ sin2 ψ + ρ̂ sec θ sinψ (4a)

θ ′
= −δ cos θ cosψ sinψ − ρ̂ cosψ (4b)

ψ ′
= γ sin θ − δ sin θ sin2 ψ − ρ̂ tan θ sinψ (4c)

where the prime ′ denotes the derivative d/dτ with respect to the dimensionless time τ = tl/I1
and

δ =
I1

I2
− 1, γ =

I1

I3
− 1, ρ =

h

l
, ρ̂ = ρ(1 + δ) (5)

are dimensionless parameters. The dimensionless energy is a constant of motion and is given by

E =
1
2


1 + γ sin2 θ + δ cos2 θ sin2 ψ


+

1
2
ρ̂(ρ + 2 cos θ sinψ). (6)

Proof. Taking the equations from Theorem 1, dividing by l, then scaling time by I1/ l
non-dimensionalises the equations, and solving for the derivatives of the angles gives the
equations with the dimensionless parameters σ , δ, and ρ as stated. The energy is given by
E =

1
2 (L − A)t I −1(L − A) where L = Rt l. The fact that it is a constant of motion can be

shown by direct computation, or alternatively using the fact that it is the Hamiltonian of the flow
with respect to the Poisson structure L×. Non-dimensionalisation and expressing this in Euler
angles gives the result. �

Remark 2.1. The symmetric case is found for δ = 0 and the case with the rotor fixed is ρ = 0.
In all cases φ does not appear on the right hand side.

Remark 2.2. For ρ = 0 the pure somersaulting equilibrium (ignoring φ) is at θ = ψ = 0,
and the eigenvalues of the linearisation about this equilibrium are ±

√
−δγ . In particular the

somersault is unstable when δ < 0. This corresponds to I3 < I1 < I2, which will be our
standard assumption in the general case.

Remark 2.3. The non-dimensionalisation measures time in units of the inverse angular
frequency l/I1 of the pure somersault. Hence in scaled time after time 2π , a full pure somersault
is executed, corresponding to φ′

= 1 when ρ = δ = 0. This is why in the following figures we
often plot the period divided by 2π .

3. The symmetric case

The dive can be separated into rigid and non-rigid stages. In the rigid stage ρ = 0 and for a
symmetric body δ = 0. Therefore, the equations of motion become trivial with φ′

= 1, θ ′
= 0,
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and ψ ′
= γ sin θ (a constant). Even when ρ ≠ 0 (“rotor on”) the equations of motion can be

expressed completely in terms of θ :

Corollary 3. In the symmetric case I1 = I2 ⇐⇒ δ = 0; the equations of motion are

φ′
= 1 + ρ sec θ sinψ (7a)

θ ′
= −ρ cosψ (7b)

ψ ′
= γ sin θ − ρ tan θ sinψ (7c)

where

sinψ =
E −

1
2 (1 + ρ2)

ρ cos θ
−
γ

2ρ
sin θ tan θ. (7d)

Proof. Solving the energy equation with δ = 0 for sinψ gives the result. Thus (at the expense of
a square root in the θ̇ equation) the angle ψ can be eliminated on the right hand side. Note that
the first term on the right hand side vanishes when δ = 0. �

The dive is divided into five stages; it starts with a rigid stage (“rotor off”) in pure som-
ersaulting motion where L = l = (l, 0, 0)t = const. In this stage we have φ′

= 1 and
θ = ψ = 0 = const. The time in stage i is denoted by Ti or T̂i for the dimensionless time
in stage i , the amount of somersault by φi , and the amount of twist by ψi . In stage 1 (pure
somersault) we have ψ1 = 0, and φ1 = T̂1.

In the non-rigid stage 2 the rotor is switched on. When the rotor is switched on the trajectory
starts at L = (l, 0, 0)t and we let it run until it reaches the maximum possible value of tilt θmax
along that orbit, because the twist in the next stage will then be fastest, since ψ ′

= γ sin θ . In the
next two lemmas we are going to compute the amount of time T2 to complete the 2nd stage of
the dive, and the amount of somersaulting φ2 that occurs during this time. Let us remark that φ2
can be interpreted as one quarter of the rotation number of the integrable system rigid body with
a rotor.

Lemma 4. The maximal θ that can be reached with “rotor on” from L = (l, 0, 0)t is given by

cos θmax =


β2 + 1 − β, β =

ρ

γ
. (8)

The inverse relation is

β =
s2

2
√

1 − s2
, s = sin θmax. (9)

The time T2 to move with “rotor on” from the point L = (l, 0, 0)t to the point L =

l(0, cos θmax,− sin θmax)
t is

l

I1
T2 = T̂2 =

2k

sγ
K (k2), k2

=
1 − s2

2 − s2 . (10)

Proof. By discrete symmetry the maximum θmax occurs for ψ = ±π/2. Then, from the energy
equation in Corollary 3 we obtain sin2 θ±2β cos θ = 0, and hence the result. Using this equation
β can be eliminated in favour of the variable s = sin θmax.
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Fig. 2. Scaled time with rotor on T̂2 = lT2/I1 as a function of maximal tilt s = sin θmax, γ = 19, as given by (10).

Considering the θ ′ equation, separating the variables, and integrating from 0 to θmax gives θmax

0

2dθ

γ


4β2 − sin2 θ tan2 θ

=


dτ = T̂2. (11)

This is a complete elliptic integral of the first kind, which can be put into algebraic form with
the substitution z = sin θ so that the upper boundary is s. This can be expressed in terms of
Legendre’s K , see e.g. [3]. Un-scaling time gives the relation between T2 and T̂2. �

Remark 4.1. The scaled time T̂2 for stage 2 (up to the overall factor 1/γ ) depends on the
maximal tilt angle s = sin θmax only, see Fig. 2. We use the term “maximal tilt angle” for s
and θmax interchangeably, since they determine each other and for small tilt s ≈ θmax.

Lemma 5. The amount of somersault that occurs with “rotor on” is given by

φ2 =
1
s


k(1 + 2γ−1)K (k2)− (k−1

− k)Π (2 − k−2, k2)


(12)

where k2
=

1−s2

2−s2 as above.

Proof. Using the equation for φ′ from Corollary 3, transformed as dφ
dτ =

dφ
dθ

dθ
dτ with the equation

for θ ′ gives θmax

0

2 − γ tan2 θ

γ


4β2 − sin2 θ tan2 θ

dθ =


dφ = φ2. (13)

This is a complete elliptic integral of the third kind which can be put into algebraic form with the
substitution z = sin θ so that the upper boundary is s. Expressing it in terms of Legendre normal
forms K and Π , see, e.g. [3], gives the result. �
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Remark 5.1. φ2 is a function of the dimensionless parameters s and γ only. The combination
T̂2 − φ2 is a function of s only.

With the analytical results for the amount of twist and somersault performed with rotor on, it
is possible to derive conditions for a full twisting somersault in the symmetric case I1 = I2. The
complete dive has 5 stages, pure somersaulting (stage 1) and “rotor-on” (stage 2) have already
been described. The 3rd stage is rigid body motion with twist and somersault. Stage 4 is like
stage 2 however with rotor on in the opposite direction, and stage 5 is pure somersaulting like
stage 1. For the time Ti spent in stage i we therefore have T1 = T5 and T2 = T4.

Theorem 6. To perform a dive with m somersaults and n twists in a total time Ttot = 2T2 + T3 +

2T1, the master equation (see Fig. 4)

l

I1
Ttot − 2mπ = 2

l

I1
T2 − 2φ2 (14)

needs to be satisfied, where the right hand side depends on the maximal tilt s = sin θmax only. In
addition, the condition that T1 is non-negative (see Fig. 3)

2
l

I1
T1 = 2πm − 2φ2 −

2π


n −
1
2


γ sin θmax

≥ 0 (15)

needs to be satisfied.

Proof. To achieve m somersaults we need 2mπ = 2φ1 + 2φ2 + φ3. To achieve n twists we need
2nπ = 2ψ1 + 2ψ2 + ψ3. In the symmetric case and with “rotor off ” (stage 1 and stage 3) the
Euler equations simplify to φ′

= 1, see Corollary 3, so that φ1 = T̂1 and φ3 = T̂3. The other
Euler equations are ψ ′

= γ sin θ and θ ′
= 0. In stage 1 we have θ = 0, so ψ1 = 0. In stage 3

we have θ = θmax = const, so ψ3 = T̂3γ sin θmax. For later reference it is useful to introduce the
scaled period of the twist P̂3 = 2π/(γ sin θmax). Stages 2 and 4 (“rotor-on”) together produce a
half-twist, ψ2 = ψ4 = π/2, so the time T3 has to be chosen so that n − 1/2 twists are generated
in stage 3, so that overall n twists occur in stages 2 through 4:

l

I1
T3 = T̂3 =


n −

1
2


P̂3 =

2π


n −
1
2


γ sin θmax

. (16)

For integer n, stages 2 and 4 are the same except for the sign of ρ. For half-integer n the same ρ
is used and the final somersaulting in stage 5 occurs with L = l(−1, 0, 0)t . In either case we set
the contribution from stage 1 and stage 5 to be equal.

The condition to have m somersaults gives

2
l

I1
T1 = 2T̂1 = 2πm − 2φ2 − T̂3. (17)

The times T̂2 and T̂3 are non-negative for n ≥ 1/2 and are determined by γ and the maximal tilt
s = sin θmax. But for too large a value of n the formula for T̂1 gives a negative number, meaning
that for those values of m, γ , and θmax the dive with this n is not possible.

Finally, the total time is simply the sum of the times of the stages. Eliminating T1 and T3 gives
the final formula T̂tot − 2mπ as a function of s only, using the previous lemmas. �
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Fig. 3. Scaled somersaulting time T̂1 = lT1/I1 as a function of maximal tilt s = sin θmax for n = 1, 2, 3, 4, 5 twists,
m = 3/2 somersaults, γ = 19, as given by (15). The dive for given n is possible if T1 ≥ 0.

Fig. 4. Scaled total time T̂tot = lTtot/I1 as a function of the maximal tilt s = sin θmax for m = 3/2 somersaults, as given
by (14). The dashed lines indicate the minimal tilt needed for n = 1, 2, 3, 4, 5 twists.

When n is a half-integer entry into the water occurs facing the opposite way as compared to
integer n. The half of the half-integer may be interpreted as the tennis racket half-twist [1] which
occurs even when the rotor is not used, but instead the separatrix (or nearby) is traversed from
one equilibrium on the L-sphere to the opposite one, e.g. see Fig. 6.

When designing a jump one fixes Ttot, n, and m, and tries to find a solution to the equations for
which T1 is non-negative. Solutions appear in one-parameter families, since the right hand side
of (14) just depends on s, while on the left hand side only the product of l and Ttot is determined.
So in the space of parameters h and l a curve is defined.

However, if one imagines that a particular solution is sought after takeoff, then l and Ttot are
already fixed, and the only parameter still at disposal is the speed of rotation h, and hence s. The
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fact that the solutions appear in 1-parameter families in (h, l) space, see Fig. 4, is thus crucial to
allow for corrections after takeoff.

The equations of the main theorem possess solutions for realistic values of the parameters
(as discussed in the beginning, γ ≈ 19, Ttot ≈ 1.5, h ≤ 8π , l ≤ 50π ) for m < 3 and n ≤ 4.
Thus a typical value of β = h/(lγ ) is ≈ 0.01, which gives a corresponding s = sin θmax ≈ 0.14,
and this is almost the tilt required to achieve n = 4 twists, see Fig. 4. When m is too big then
by (14) the necessary l or Ttot (or both) will be too big. When n is too big then by (15) the
minimal necessary tilt s = sin θmax that will keep T1 non-negative will be so large that it cannot
be achieved by a human diver. A robotic model, however, could probably achieve the necessary
values of h. The reason we cannot do more somersaults with this simple model is that we have
not included the possibility of moving into pike or tuck position. This would decrease I1 and
hence allow more somersaults for the same value of angular momentum l, since the essential
parameter is the combination T̂tot = lTtot/I1.

Another interesting observation is that if T̂tot is sufficiently big, which in practical terms means
that l is sufficiently big (as Ttot is essentially determined by the height of the platform), then after
takeoff the diver can still decide how many twists to do by adjusting the tilt generated and the
timing of the individual stages.

To get a better understanding of what the two main Eqs. (14) and (15) are saying and how
they depend on the parameters, we now provide Taylor expansions valid for small maximal tilt
angle s.

Lemma 7. For small s = sin θmax we have the following leading order behaviour:

2T̂2 − 2φ2 ≈
√

2


2E


1
2


− K


1
2


s + O(s3) (18a)

2T̂2 ≈
2
√

2
sγ

K


1
2


+ O(s). (18b)

Proof. Note that Ttot does not depend on γ , specifically the right hand side of (14) depends on s
(and hence β = ρ/γ = h/(lγ )) only:

T̂2 − φ2 =
1
s


−kK (k2)+ (k−1

+ k)Π (2 − k−2, k2)

. (19)

Furthermore, this combination is regular at s = 0 using Π (0, k) = K (k), and since k is an even
function of s the whole expression has vanishing limit for s → 0. The first s-derivative of the
right hand side is 2(k−1

− k)(2E − K ) and hence the result. By contrast, T̂2 has a pole at s = 0
and Taylor expansion of sT̂2 gives the result. �

Theorem 8. The leading order behaviour of the total scaled time T̂tot = lTtot/I1 is determined
by

T̂tot

2π
= m + As + O(s3) where A =

1
√

2π


2E


1
2


− K


1
2


≈ 0.1907. (20)

The minimal twist θ∗
max that is necessary to perform m somersaults and n twists is approximately

given by

sin θ∗
max ≈ θ∗

max ≈
B + n

mγ
, where B =

√
2
π

K


1
2


−

1
2

≈ 0.3346. (21)
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Proof. Using Lemma 7 in the master equation for T̂tot gives the first result. The minimal θmax is
determined by the condition that T1 be equal to zero. In the formula for T̂1 one contribution comes
from the pole in Lemma 7, and the other from the pole in s in T̂3, see Theorem 6. Combining
them the equation T1 = 0 can be approximately solved to get the stated result. �

This shows that (as expected) more twists can be generated with more tilt, and the additional
“cost” in tilt of one twist is approximately 1/(mγ ). It should be noted that increasing the tilt
s = sin θmax also increases T̂tot, see Fig. 4, and hence for fixed Ttot it increases the necessary
total angular momentum. The minimal total scaled time that is feasible is simply given by the
number of somersaults m, and increasing the tilt s increases T̂tot by s A.

The agreement of these approximate formulas with the exact formulas shown in Figs. 3 and 4
is very good in the relevant range of s.

4. The general case

When all three moments of inertia are distinct then the rigid twisting stage 3 does not
have constant tilt θ , and complete elliptic integrals are needed to express the time T3 and the
somersault φ3. The corresponding expressions were elementary in the symmetric case. Since θ
is not constant, sin θ can no longer be used as a parameter. Instead we will use s− = sin θmin or
s+ = sin θmax, which are determined by the extremal values of θ in the twisting stage 3. Thus
from equating the energy in Corollary 2 for ρ = 0 at ψ = 0 and ψ = π/2 we find

s2
+ + (1 − s2

+)ν = s2
−. (22)

We assume that the somersault axis is the middle principal axis so that I2 > I1 > I3. This
means that the somersault is unstable. As a result the dimensionless parameter δ < 0.

Starting from Corollary 2 we find

Lemma 9. The period P̂3 of the twisting motion and the change of somersault angle Φ3 during
such a period are given by

γ P̂3 =
8

(s+ + s−)
√

1 − ν
K (k2), k =

s+ − s−

s+ + s−

, ν = δ/γ (23a)

and

Φ3 − P̂3 =
8

(s+ + s−)
√

1 − ν


Π (n−, k2)− Π (n+, k2)


, n± = k

1 ± s−

1 ∓ s−

. (23b)

Note that we distinguish the period P̂3 from the time T̂3 spent in stage 3; similarly for the
somersault angle Φ3 per period and somersault angle φ3 acquired in stage 3.

In this description it is convenient to use both s− and s+, but of course either one could
be eliminated with (22). Expressing everything in terms of s− has the advantage that the limit
s− → 0 corresponds to the approach of the separatrix of the pure somersault, while s− → 1
corresponds to the approach of the pure twisting motion.

When the moments of inertia are all distinct, the choice of Euler angles which we used earlier
in the paper is natural because it has the physical interpretation of somersault, tilt, and twist.
However, this gives a complicated result when the analogue of Corollary 3 is derived. The reason
is that in order to solve the energy for sinψ when δ ≠ 0 additional square roots are introduced.
Instead a system of Euler angles needs to be used that has a rotation about the axis of the rotor



S. Bharadwaj et al. / Indagationes Mathematicae ( ) – 11

last, say R = R1(φ̃)R3(θ̃)R2(ψ̃). We will use this system of Euler angles to compute the time
T2 and the somersault φ2 in stage 2.

Theorem 10. An alternate form of the equations of motion for a rigid body with a rotating disc
attached is given by

l

cos θ̃ cos ψ̃
− sin θ̃

cos θ̃ sin ψ̃

 −

0
h
0

 =

I1 0 0
0 I2 0
0 0 I3

  cos θ̃ cos ψ̃ sin ψ̃ 0
sin θ̃ 0 1

− cos θ̃ sin ψ̃ cos ψ̃ 0




˙̃
φ
˙̃
θ
˙̃
ψ

 . (24)

The scaled equations of motion are

˙̃
φ = 1 + γ sin2 ψ̃ (25a)

˙̃
θ = γ cos θ̃ sin ψ̃ cos ψ̃ (25b)

˙̃
ψ = −(1 + δ)ρ + sin θ̃ (γ sin2 ψ̃ − δ) (25c)

with conserved energy

E =
1
2


(1 + γ sin2 ψ̃) cos2 θ̃ + (1 + δ)(ρ + sin2 θ̃ )


. (26)

In principle the computation of T2 and φ2 are similar to the symmetric case, but are a bit
more elaborate. For stage 2 only θmax is defined, because stage 2 always starts with θ = 0, but
nevertheless we can use s− from stage 3 as a parameter for stage 2.

Lemma 11. The energy with “rotor on” is E2 =
1
2 (1 + ρρ̂) starting at L = (l, 0, 0)t , and the

highest point on that orbit is L = (0,− sin θ̃max, cos θ̃max) where

−


1 − s2

+ = − cos θmax = sin θ̃max =
ρ̂ −


ρ̂2 + γ (γ − δ)

γ − δ
. (27)

The time T2 to move along this orbit segment is given by

γ T̂2 =
1

k


s2
−(1 − ν)+ ν

K (k2) (28a)

where

k2
=
(s−2

− − 1)(s2
−(1 − ν)+ ν)

(2 − s2
−)(1 − ν)

, ν =
δ

γ
. (28b)

Proof. The point L = (l, 0, 0)t corresponds to θ̃ = ψ̃ = 0, while the point L = (0, ∗, ∗)t

implies ψ̃ = π/2. Evaluating the energy at (l, 0, 0)t defines the energy E2 with rotor-on, and
evaluating E2 = E(ψ̃ = π/2) defines the endpoint θ̃max, which gives θmax and hence s+. Then
s+ can be expressed in terms of s− using (22).

Eliminating ψ̃ from the ODE for ˙̃
θ , separating the variables, and changing variables to z =

sin θ̃ gives a first kind integral on the elliptic curvew2
= P(z) = z(zδ+2ρ̂)(z2(γ−δ)−2zρ̂−γ ).

Using [3] this can be written in Legendre’s normal form as stated. �
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Comparing the (scaled) energy E1 = 1/2 of the pure somersaulting motion to that of the
twisting motion E3 = E1 +

1
2ρρ̂, we see that the change in energy is proportional to ρ2.

The angles φ and φ̃ are related: upon a complete cycle in θ̃ and ψ̃ (and hence L) the overall
advance in φ̃ is the same as the overall advance in φ upon a complete cycle in θ and ψ (which
is the same cycle in L), but only modulo 2π . It turns out that in our case the total change of the
two angles over a period in L differs by 2π , and hence φ2 = φ̃2 − π/2.

Lemma 12. The change of angle φ̃2 in the general case satisfies

φ̃2 − T̂2 = f+Π (n+, k2)+ f−Π (n−, k2) (29a)

where k2 is as in the previous lemma, g = s−


(1 − s2

−)(2 − s2
−)(1 − ν), and

n± = 1 − s−2
− ± s−2

−


(1 − s2

−)/(1 − ν),

f± = g


1 − s2

− ∓


(1 − s2

−)(1 − ν)


.

(29b)

Proof. The change in angle is given by a complete elliptic integral on the same elliptic curve
w2

= P(z) as in Lemma 11, but with an additional rational function R(z) obtained from
dφ̃
dτ =

dφ̃
d θ̃

d θ̃
dτ and hence

φ̃2 =


R(z)

dz

w
, R(z) = 1 + δ −

ρ̂ − δ/2
1 + z

−
ρ̂ + δ/2

1 − z
. (30)

Using [3] this can be written in terms of K and Π as stated. �

The conditions to perform a successful dive are as before, namely Ttot = 2T1 + 2T2 + P3(n −

1/2), 2mπ = 2φ1 +2φ2 +Φ3(n −1/2) and 2nπ = 2ψ1 +2ψ2 +2π(n −1/2). The last equation
is trivially satisfied with ψ1 = 0, ψ2 = π/2. This leads to our final result:

Theorem 13. To perform a dive with m somersaults and n twists in a total time Ttot

T̂tot − 2mπ = 2(T̂2 − φ2)+ (P̂3 − Φ3)


n −
1
2


(31)

and

2T̂1 = 2mπ − 2φ2 − Φ3


n −

1
2


≥ 0 (32)

need to be satisfied.

Note that unlike in the symmetric case there is now a dependence of Ttot on n. What remains
the same in the general case is that the right hand side of the equation for Ttot depends on the
essential parameter s− and the asymmetry parameter ν only. Thus as before s− can be adjusted
after takeoff to achieve the desired dive. The right hand side of the equation for T1 in addition
depends on γ , as it did in the symmetric case.

It turns out that the series expansion in the limit of small s− has a rather limited radius of
convergence, and so it is not useful to describe the range of s− of interest to us. The reason
behind this difficulty is that for s− → 0 the elliptic integrals have a logarithmic divergence.

Fig. 5 shows how the dives change when the asymmetry increases. The main observations are
that with increasing asymmetry the necessary minimal tilt decreases, while the total necessary
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Fig. 5. Scaled stage one somersaulting time T̂1/(2π) (left) and scaled total time T̂tot/(2π) (right) as a function of
s− = sin θmin for n = 1, 2, 3, 4, 5 in the general case for m = 3/2 somersault, γ = 19, for δ = −0.1 (top row) and
δ = −0.4 (bottom row) as given by (32), (31). Dots mark the minimal s− for which the dive is possible.

time increases. This can be understood by the presence of a separatrix in the asymmetric case. On
the one hand the motion along the separatrix (even without the rotor) will produce an increase in
tilt, in fact from s− to s+, as introduced above. On the other hand the motion near the separatrix
will take longer when near s−. In fact motion along the separatrix with rotor off takes an infinite
amount of time, which is why the series expansions are not useful in this limit.

5. Geometric phase

The change in the somersault angle φ during a completion of a loop in L can be split into
two contributions, a so called dynamic and a geometric phase. We start by discussing this in the
simplest case of symmetric moments of inertia I1 = I2 and with rotor off, ρ = 0. In this case we
can write

Φ3 =
2E3 P3

l
− S3 (33)

where P3 is the period of the twisting motion, E3 the corresponding energy, and S3 is the
solid angle enclosed by the trajectory on the L-sphere. For I1 = I2 the trajectory on the L
sphere is a circle θ = const, and the solid angle enclosed by this curve and the equator is
S3 = 2π sin θ where θ = 0 is the equator (zero solid angle), and θ = π/2 is the pole (solid
angle of half the sphere). The period of twist we found before, it is P3 = 2π I1/(lγ sin θ), while
E3 = l2(1 + γ sin2 θ)/(2I1). As noted before Φ3 = l P3/I1, and hence we have verified the
above identity.

For general moments of inertia (33) still holds. Of course now the expressions for Φ3, P3
and S3 are all complete elliptic integrals. Such a geometric phase formula with mod2π on the
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Fig. 6. Phase portraits in (ψ, sin θ) for stages 2, 3, 4, corresponding to “rotor left”, “rotor off”, “rotor right”. Parts of
the three pieces of trajectories indicated in bold joined together give a dive as computed by the formulas in the previous
section. Parameters are γ = 19, δ = −0.4, ρ = 1.

right hand side was first derived by Montgomery [11]. For a particular choice of reduction the
mod2π can be removed, and this has first been done in [2]. We consider a different reduction
based on our particular choice of Euler angles instead of Poinsot’s description of the rigid body
as in [2]. Thus our Eq. (33) gives the correct somersault angle φ without mod2π , under the
condition that S3 is measured relative to the equator, as defined above. In the present application
it is clearly important to remove the mod2π , as we would like to distinguish between, say, 1/2
and 3/2 somersaults.

Including the “rotor on” stage, but returning to the symmetric case, we now have a closed
loop in L that consists of pieces from stages 2, 3, and 4. There is a generalisation of (33) due to
Cabrera [4], which allows for a general shape change. Before we write down the corresponding
expression consider the three phase portraits for stages 2, 3, 4 on the L-sphere. Here we present
the L-sphere in spherical coordinates (ψ, θ). This coordinate system is singular for θ = ±π/2,
but the motions we are interested in do not come close to this point. In Fig. 6 three phase portraits
are shown with the trajectories indicated as thick lines, which are used to construct the closed
loop.

In Cabrera’s formula the geometric phase is still given by the solid angle of the area enclosed.
What changes is the dynamics phase where the simple 2ET is replaced by


L · Ω dt . Hence

Cabrera’s formula [4] in our notation (and without mod2π ) is

Φ =
1
l


L · Ω dt − S. (34)

This formula holds for arbitrary shape changes as long as the angular momentum l is conserved.
In particular it holds for arbitrary time-dependent A and also for time-dependent tensor of inertia
I , which together can describe more realistic shape changes. In our particular case the rotating
disc produces a constant A. When the solid angle S enclosed by the trajectory is measured relative
to the equator this gives the correct overall somersault angle without mod2π , as we now show.
With the choice of Euler angles as described in Theorem 1 we have

L · Ω = l(φ̇ + ψ̇ sin θ). (35)

The solid angle integral can be thought of as


pdq where here q = ψ and p = sin θ , so that
the second term will be cancelled by the solid angle S (with appropriate sign and orientation),
and the remaining integral gives the change in φ, as claimed. When h = 0 (rotor off) then it is
easy to see that L · Ω = 2E and the original geometric phase formula for the rigid body (33) is
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recovered. Again, for our particular choice of angle we measure the area relative to the equator,
which allows us to remove the mod2π . The beauty of the resulting formulas is that they give
us a good intuition of what the change in the somersault angle is going to be without actually
computing it. Instead, we simply need to know the corresponding times and energies that give
the dynamic phase, and the area enclosed by the equator and the curve on the L-sphere. Nothing
will change in the description of the dive as presented in the previous sections, it is merely the
interpretation of the answer that changes.
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