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A NEW TWISTING SOMERSAULT - 513XD

WILLIAM TONG AND HOLGER R. DULLIN

ABSTRACT. We present the mathematical framework of an athlete modelled as a system
of coupled rigid bodies to simulate platform and springboard diving. Euler’s equations
of motion are generalised to non-rigid bodies, and are then used to innovate a new dive
sequence that in principle can be performed by real world athletes. We begin by assuming
shape changes are instantaneous so that the equations of motion simplify enough to be
solved analytically, and then use this insight to present a new dive (513XD) consisting of
1.5 somersaults and 5 twists using realistic shape changes. Finally, we demonstrate the
phenomenon of converting pure somersaulting motion into pure twisting motion by using
a sequence of impulsive shape changes, which may have applications in other fields such
as space aeronautics.

1. INTRODUCTION

The twisting somersault is a visually stunning acrobatic manoeuvre featured in numerous
Olympic sports. Within diving alone there is a wide selection of books available to assist
athletes and coaches of all skill levels, e.g. [3] [7), 10} 14} 15, 16]. Coaches are now seeking to
better understand the biomechanics behind the aerial manoeuvres associated with a good
dive to equip their athletes with a leading edge in competition. The purpose of this paper is
to use the newly established mathematical framework developed in [4} [6l, [I7] to present the
innovative 513X[f| dive consisting of 1.5 somersaults and 5 twists that in principle can be
performed by world class athletes. In doing so, we develop a mathematical understanding
of the effects of shape change on the dynamics of the system.

The physics behind the twisting somersault was first correctly described in detail by
Frohlich in [8], where he explains how a diver taking off in pure somersaulting motion
can utilise shape change to initiate twist mid-flight. Since then, Yeadon has extensively
analysed aerial movement of the human body in [19, 20, 21}, 22] and the biomechanics of
the twisting somersault in [23] 24] 25, 26]. The simplest mechanism for producing the
effect of twisting somersault is found in [4], which uses a rotor instead of arms to initiate
and terminate twist. As the shape is not physically changing, the system is simple enough
so that an analytical formula can be established connecting the number of somersaults,
twists and airborne time. The model in [6] incorporates shape change to resemble real
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2 A NEW TWISTING SOMERSAULT - 513XD

dives, however simplicity is kept by fixing nearly all segments relative to the torso, with
the exception of the left shoulder joint. In this paper we build on the results established
in [6] and allow movement in both arms with the purpose of presenting the innovative
513XD dive. To date, no athlete has attempted a 513XD dive in competition, nor has
the International Swimming Federation (FINA) even assigned a degree-of-difficulty to it.
By simulating the 513XD dive we hope to provide coaches and athletes with insight and
motivation so that the dive may one day be executed in competition.

An original simplified version of the 513XD dive was discovered by the 2nd author
in November 2013, while on sabbatical in Boulder, Colorado. The details of the dive
and important improvements were worked out in the PhD thesis [I7] of the first author.
The mathematical core of our analysis is the use of geometric mechanics to achieve a
conceptual understanding of successful dives. This allows for the description of the motion
in a symmetry reduced space (i.e. the body frame), from which the motion in full phase
space can be reconstructed using a formula involving a so called geometric phase and a
dynamic phase. Even for rigid body motion such a description is relatively new [13], and the
extension to non-rigid bodies [5] is quite recent. In [6] we have extended their formulas to
remove a mod2w operation; this extension is essential for application to diving. A related
but different extension has been introduced earlier in [2]. Using these modern tools from
geometric mechanics we are thus able to obtain a full understanding of twisting somersault,
and as a result can propose a dive that has never been performed as of the end of 2016.

The structure of the paper is as follows: in section 2] we introduce the model of the athlete
consisting of three segments, and establish the overall tensor of inertia I and momentum
shift A of the system. In section [3] we develop the mathematical framework by deriving the
equations of motion and presenting the solutions to the dynamics of rigid body motion. In
section [d] we use impulsive shape changes to construct the faster twisting somersault, and
compare our findings to the twisting somersault described in [6]. In section [5| we present
the 513XD dive consisting of 1.5 somersaults and 5 twists using realistic shape changes. We
show that this dive can in principle be executed by real world athletes, and if successfully
performed in competition would revolutionise the sport of diving. Finally, in section [6] we
demonstrate it is possible for an athlete to take-off in pure somersaulting motion and use a
sequence of impulsive shape changes to enter a state of pure twist. This shows the athlete
can continually apply shape changes to speed up twist in the twisting somersault, limited
only when pure twisting motion is achieved.

2. MODEL OF THE ATHLETE

In the literature there are several mathematical models of the human body varying in
complexity, ranging from Hanavan’s model [9] comprised of simple geometric solids such as
ellipsoids and truncated cones, to Jensen’s model [11] that involves stacking thin elliptical
disks atop one other for better approximation of each segment. However, when examining
the dynamics only the moments of inertia, centre of mass and joint positions of each
segment come into the play, leaving all of the complicated geometries hidden within the
system. For this reason we are not overly concerned with the geometry and thus base
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(A) The body segments B;, local (B) The centre of mass vectors C;
body frames F; and overall body (sqlid vectors) and joint vectors
frame Fc (dashed axes). J; (dashed vectors).

FIGURE 1. Visualisation of body segments, body frames, centre of mass
and joint vectors. We note that the origin of F¢ lies close to F in reality,
so for illustration purposes we have deliberately moved the origin of F¢ to
clearly display the local body frames and vectors. The lower legs and feet
have also been omitted for this reason.

our three segment model off Frohlich’s [§], where his model parameters are presented in
Appendix [A] The mass m; of each segment B; is evaluated by summing up the masses of
the subsegments given by Frohlich’s [8] model, and we denote M as the total mass of the
athlete. From here on we will use index i € {b,[, 7} to refer to body segment B;.

For each B; a local body frame F; is attached with its origin coinciding with the centre
of mass and coordinate axes pointing in the direction of the principal moments of inertia,
where the tensor of inertia I; is computed using the parallel axis theorem. The joint

vector Jz is written in the local body frame F; so that it is constant, and the geometric

interpretation is the position vector from the centre of mass of B; to the joint location that
connects to B;. We illustrate body segments B;, frames F;, joint vectors J f and centre of
mass vectors C; in Figure [l} and provide the numerical values of the collection of I; and
jz for our specific model in Appendix
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The coupled rigid body system has a spatial frame Fg and overall body frame F¢, where
both frames are chosen to have their origin co-moving with the overall centre of mass of the
system. Now the coordinate axes of Fg are fixed in direction, and without loss of generality
we choose to align the axes of Fo with the torso specified by F;,. We will use lowercase
letters to denote quantities in Fg, uppercase letters in Fo and uppercase letters with tilde
in F;. Let V be any arbitrary vector observed in F¢, so that the very same vector in Fg
is given by v. The transformation between the two frames is given by v = RV, where
R = R(t) is the rotation matrix that specifies the orientation of the system. The shape
of the system is specified by the collection of rotation matrices {R;}, where based on our
choice of Fo we have Ry = 1. To express an arbitrary vector VZ written in F; to the
overall body frame F¢, we use the transformation V = C; + RZVZ

We now want to express C; in terms of the collection of geometry {J7 } and shape {R;}.
Provided that B; and B; are two connected bodies we have

(1) Ci+RiJ. = C;+R;J,

(2

which can be verified with Figure By construction Z m;C; = 0, so using to solve

for a reference centre we get

1 b =i
(2) Cy=/ > miRid; = Jy),
ie{l,r}

which can be substituted back in to obtain
~i ~b
(3) Ci:Cb—i-JZ—R,‘Ji.

Note in the case of i = b we have R, = 1, so we simply retrieve as expected.
As derived in [6], for a system of coupled rigid bodies we have

(4) = Z (R,LRg g [|Cy21 — cicg])
(5) A= Z (mc % Ci + Rifiﬂi> ,

where I = I(t) is the tensor of inertia of the system and A = A(t) is the momentum shift
generated by shape change. The angular velocity €2; for B; is relative with respect to By,
and is defined such that RﬁRiV = QZ'V for some arbitrary vector V.

If we restrict the arm movement to be about the abduction-adduction plane of motion
as shown in Figure then the shape of the athlete can be completely specified with
just two angles (ay, ;) € [0,7]2. We let (ay, ;) = (0,0) correspond to the anatomical
neutral position where the arms are down by the side, and (aq, ;) = (7, 7) be the layout
position where both arms are pointing straight up. In terms of rotation matrices we have
Ri(ay) = Rz(y) and Ry () = Ry(—ay), where R, is the elementary rotation matrix about
the z-axis and the minus sign accounts for the opposite direction of right arm rotation when
compared to the left arm. For simplicity we will introduce a two letter arm code to describe
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the actions of the left and right arms, respectively. When the arm is stationary relative to
the torso we use U for the up position and D for the down position, or if the arm is in motion
we use H when it is being raised and L when it is being lowered. E.g. the layout position is
denoted by UU as both arms are pointing straight up, and the anatomical neutral position
is denoted by DD as both arms are down by the side. Evaluating the tensor of inertia I
with these shape change restrictions simplifies it to the form

I.. 0 0
(6) 1= 0 Iy I, |,
0 Iy, 1.
and similarly the momentum shift A reduces to
(7) A = (Aiég + Ariy,0,0)".

The components of I and A are explicitly listed in Appendix [B] In general the tensor of
inertia [ is non-diagonal, but there is always a coordinate transformation

(8) J = diag (J, Jy, J.) = R, 'R,

with some rotation matrix R, that makes J diagonal in some alternate body frame Fp. In
the block-diagonal case of @ we have

9) R, =TR.(p) where  p= %arctan (IZIsz>

yy — tzz
We denote I; = diag(Is z, I, I, ) as the tensor of inertia for the layout position given by
shape UU, and J; = diag(J; 4, Jt,me) as the diagonalised tensor of inertia for the twist
position given by shape DU and UD. We want to emphasise that .J; is written in Fp, and
the transformation can be used to rewrite tensors in F-. The numerical values of I
and J; are specified in Appendix [A]

3. EQUATIONS OF MOTION

As shown in [6] the angular momentum vector L of a coupled rigid body system can be
expressed as

(10) L=zIQLA,

where [ is the tensor of inertia, A is the momentum shift, €2 is the angular velocity and all
quantities are viewed from Fo. In the absence of shape change I is constant and A = 0
because it is linear in the shape velocities, thus we recover the well known formula L = I
for rigid body dynamics. To derive the equations of motion for coupled rigid bodies we take
the time derivative of I = RL, which gives [ = RL+RL = 0and use R'IRV = QV = QxV
to express the result as

(11) L=LxQ=LxIYL-A).

When there is no shape change (which implies that A = 0 and I = const) there are the
classical six equilibria of steady rotations, which are illustrated in Figure [2| for symmetric
shape UU with spatial angular momentum vector I = (0,1,0)!. For asymmetric shape
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(A) Cartwheel L = (1,0,0)" (B) Somersault L = (0,1,0)" (c) Twist L = (0,0,1)"

FIGURE 2. Each diagram above corresponds to steady rotations, where the
direction can be either clockwise or counterclockwise resulting in a total of
six equilibria. To distinguish between the front and back of the athlete’s
torso, the back has been shaded black.

(o, ap) the equilibrium points are rotated by R, given by @D, which is due to the diago-
nalisation of I shown in . In our model of the athlete the diagonalised tensor of inertia
J = diag (Jy, Jy, J») has components J, > J, > J, for all (ay, ;) € [0,7]2. Tt is a classical
result that rotation about the axis of the intermediate moment of inertia is unstable, see,
e.g. [|. Thus cartwheeling and twisting motions are stable while somersaulting motion is
unstable irrespective of the arm positions.

In the absence of external forces and without shape change the orbit L is governed by
conservation laws, where the total energy F and spatial angular momentum vector I is
constant. As the rotation matrix R, can be used to diagonalise an arbitrary tensor I, we
will assume without loss of generality that F¢o is aligned with the principal moments of
inertia and rotates by (9) whenever necessary. This enables us to write L = (Ly, Ly, L.)*
and I = diag([,, 1y, ;) to avoid introducing new symbols for these quantities in another
body frame. The angular kinetic energy F = %Qtl 2 defines a surface known as Poinsot’s
ellipsoid, and rewriting this ellipsoid in terms of L produces what we refer to as the energy-
inertia ellipsoid

2 L g2
12 E=t4 24 =2
(12) 2I, ' 21, ' 2I,
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As the angular momentum [ is constant in Fg the length is preserved in F¢, which means
L must lie on the L-sphere with equation
(13) P=L2+ L)+ L2

Thus the trajectory of L must lie on the intersection between the energy-inertia ellipsoid
and L-sphere , which in general forms two closed curves. The time evolution on
these curves can be expressed in terms of Jacobi elliptic functions, see, e.g. [1} [12], which
we write as

(14) L(t; B, 1, ¢) = (Ly(t), Ly(t), L.(t))’
where the parameters on the right hand side are suppressed. Specifically, when 121'; I <

2E < I?I;! the components are

I,(12 — 2F1L,) I,(12 — 2EL,)

(15)  Ly=s —7 7 (1, k%) L,= 77 sn (1, k?)
x z Yy z
I(2EI, — I
LZ = —S (I—Il)dn ('T, k;2)
with
(I, — L)(2EI, — I2) 5 (I — I))(I*> - 2EL)
16y~ \/ 1,1, (t+c) (I, — I.)(2ET, — 12)’

and the two constants ¢ (phase shift) and s (direction that is either +1) that appear are
chosen to satisfy the initial conditions. As we will only be using counterclockwise twists
in our computations, s = +1 always, and thus we omit this constant in the parameters of
. It is important to note the minus sign in for L. occurs because I, > I, > I,
for the diver, and that had the inequalities been reversed, i.e. I, < I, < I., there would
be no minus sign. As the Jacobi elliptic functions are periodic in 7 with period 4K (k%) =

3 du . .
4/ —————  the period of the orbit is
0 1 —k?sin®u

(17) T(E,I) = 4K(k;2)\/([y — Ilfgélm )

where K (k?) is the complete elliptic integral of the first kind. When I?I; 1 < 2E < lzfy_ L
the results presented in , and need to be modified by swapping L, < L,
and I, <> I,. In the limiting case when 2E — [2I! the energy becomes minimal and the
two closed curves shrink to the points given by (+[,0,0). Similarly, when 2E — 1! the
energy becomes maximal and the curves shrink to the points at (0,0, +/). When 2F = Z2IJ !
the Jacobi elliptic functions reduce to hyperbolic functions given by

(I, — I [, — 1
(18) L, =s1l Iy(<fz—fz; secht L, = saltanh7 L, = —s152l Iy((Ix_I‘ngechT,
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where the two signs s1 and s distinguish the four trajectories resulting from the intersection
of the L-sphere and energy-inertia ellipsoid shown in Figure The sign s, determines
whether we are on the stable or unstable manifold of the unstable equilibrium points, and
s1 distinguishes which of the two branches of the manifold we are on. From the unstable
equilibrium points it is easy to move into the twisting region by a small kick increasing L,
which will initiate twisting motion travelling all the way to the other side of the sphere
before returning.

Let I = (0,1,0)! be the spatial angular momentum in Fg, and suppose the athlete is
rigid in twist position with shape DU so that the diagonalised tensor of inertia is J; =
diag(Ji e, Ji,y, Ji,-). Now if the initial angular momentum is

(19) L5(0) = Ru(~X)1

then once the quantity is rewritten in Fp the energy can be computed with to obtain
(20) B3 =1?(J;} cos® (p+ X) + J; sin® (p + X)) /2.

With the tensor of inertia and energy known we can use to express the orbit as

(21) Ls(t) = RpL(t; B3, Ji, T5/4),

where T3 = T'(E3, J;) is the period of twist in the twisting somersault computed from ((17))
and the phase shift constant ¢ = T3/4 is chosen to satisfy the initial condition . In
Figure E| we illustrate the orbit showing a slight tilt due to R,, which is the rotation
matrix needed to align Fp with F¢.

Twisting Somersault

/ Region (clockwise)

Wobbling Somersault

Regions

Twisting Somersault

Region (counterclockwise)

FIGURE 3. Intersection of the energy-inertia ellipsoid with L-sphere when
2F = l2Iy_ ! results in four trajectories emerging from the poles (0, =£l,0).
The separatrices divide the dynamics into the twisting somersault and wob-
bling somersault regions as indicated.
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For arbitrary energy F and tensor of inertia I the period T'(E, I) given by specifies
the amount of time required to complete a loop around the L-sphere. This corresponds to
the rigid body physically completing a full twist with some amount of somersault A¢, which
cannot be directly observed on the L-sphere but can be recovered through reconstruction
of the full dynamics. Montgomery [13] writes

(22) A = 2ETT — S mod 27

which partitions the change in orientation A¢ into the sum of the dynamic phase 2ET/I
and geometric phase S. While Montgomery’s formula is only applicable to rigid bodies,
Cabrera [5] generalises the result to

T
(23) Agb:—S-i—%/ I"Y(L—A)-Ldt mod 2
0

for self-deforming bodies, where the tensor of inertia I and momentum shift A are now
functions of ¢, and S is the solid angle enclosed by the orbit L. As the momentum shift
A is proportional to the shape velocities, Cabrera’s formula reduces to Montgomery’s
formula (22)) in the absence of shape change. By keeping the surface area A (not to be
confused with the momentum shift A) lying to the left of the oriented orbit L we have the
relation to the solid angle S = A/I?. To remove the mod 27 essential in distinguishing the
amount of somersault, we appropriately define the surface area A to be the area between
L and the equator, see [6] and [17] for more details. Intuitively, we expect more geometric
phase in a faster twisting somersault because there is no geometric phase in the limiting
case of no twist, and this is in agreement with our definition. The derivation of the solid

L,

FIGURE 4. The orbit L3(t) corresponding to twisting somersaults in the
counterclockwise direction.
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angle S can be found in [6], here we simply state

I
24 S(E/I2,I)=4 Y I, — LYO(v, k%) — I H, K (k?
(24) (B/1%,1) \/fwzzuy—zzwx(( (v, k?) (k).
where k2 is given by and
L(I, — 1)
H, =2EI, /1> -1 H,=1-2EL/I? =22 ¥
/ / YT L, - 1)

4. IMPULSIVE SHAPE CHANGES

When the shape change is instantaneous the equations of motion simplify to

(25) L=I"'AXL.
(A) LU fast-kick (B) UL fast-kick (¢) LH fast-kick
L, =Ru(~-X)L_ L, =R.(X)L_ L, =Ru(-YV)L_
(D) HU fast-kick (E) UH fast-kick (F) HL fast-kick
L, =R.(X)L_ L, =R.(-X)L_ L, =R.(V)L_

F1GURE 5. The tilt generated from different impulsive shape changes, where
the computation details are specified in [17].



A NEW TWISTING SOMERSAULT - 513XD 11

[810) DU UuU

LU HU

FIGURE 6. Simplest 5-stage dive mechanic for executing twisting somersaults.

This is because L remains at constant length while A diverges as it is proportional to
the shape change velocities. When the shape change becomes impulsive we have 2 =
I7Y(L — A) - —I~'A resulting in ([25)), and expressing the components using (6]) and
gives

(26) L =1 (Aja+ Avé,)ML

where M is a constant matrix. This is a time-dependent linear differential equation with
solution

(27) L, =exp(OM)L_ =TR.(O)L_,

where L_ and L, are the instantaneous angular momenta before and after the shape
change, and the angle

-
(28) = lim [ I '(Ajq+ Ady)dt

=0t Jo
is the tilt generated from the impulsive shape change. We appropriately parameterise the
shape angles «; and «, to evaluate , and for the impulsive shape changes shown in
Figure [5| the numerical values are X ~ 0.147 and )Y ~ 0.330.

Stage Energy E; Somersault rate Time spent 7;
Shape Period T; Twist rate Orbit L;(t)
1 0.02431? 0.048521 (64.7452m — 19.4154n) /1
uu 00 0 (0,1,0)"
3 0.04527> 0.05548l1 33.9610n/1
DU  33.9610/1 0.185011 R,L(t; B3, Jy, T5/4)
5 0.02431? 0.048521 (64.7452m — 19.4154n) /1
Uuu 00 0 (0,1,0)

Total time 75 = (129.4905m — 4.8699n) /I
TABLE 1. The simple twisting somersault consisting of m somersaults and
n twists that follows the 5-stage dive mechanic given by Figure @
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L:

/4

/8
- —3‘7r/4 —7‘r/2 —7{/4 7r(4 7r(2 37r‘/4 T

- ~

(A) L-sphere. (B) Mercator projection.

FIGURE 7. The point shown on the L,-axis is the steady rotation corre-
sponding to pure somersaulting motion. The black solid loop shows the
orbit L3(t) and the blue dashed loop represents the family of initial condi-
tions L5(0; 73).

Combining rigid body orbit with for impulsive shape changes we can now
formulate twisting somersaults. Following the construction of [6] the simplest twisting
somersault dive mechanic is shown in Figure [6] where the athlete takes off and finishes the

L ! ! 1 ! ! ! ! ! ! 1 ! !
0 Ta/4 Ta/2 3T,/4 T

FIGURE 8. The energy of stage 5 that results from the impulsive HU shape
change expressed as a function of time spent in stage 3. The blue region
denotes E5 < 1?/(2I,,), which results in wobbling somersaulting motion.
The period of wobble becomes infinite when 73 = 0 mod 73, and this yields
the familiar pure somersaulting motion of the athlete.
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[8)0) DU UD DU [8)0)

LU HL LH HU

FIGURE 9. 9-stage dive that enables athletes to execute more twists.

dive in pure somersaulting motion while using LU to initiate and HU fast-kick to terminate
twisting motion mid-flight. In the initial and final stages of the dive the orbit is

(29) Li(t) = Ls(t) =1=(0,1,0),

which corresponds to an equilibrium point on the L-sphere, while in stage 3 the orbit is
given by and is illustrated in Figure El The technical details of the dive consisting of
m somersaults and n twists are given in [0], with the dive summary provided in Table In
the table we set 7y = 75 and use the m somersault constraint in to determine the total

L,
n/4r
/8
-n —3‘77/4 —q/Z —7‘r/4 ﬂ(4 ﬂ(Z 371‘/4 T
SQ . —71'/8 | . PR
L ~ .
—_— | e——
y No o aar e
N ,
N 4
~ - e
—31/8- —
—r/2f
(A) L-sphere. (B) Mercator projection.

FiGure 10. The LU fast-kick takes the orbit from the equilibrium point
to the upper loop, and the HL fast-kick brings the orbit to the lower loop
corresponding to a faster twisting somersaulting state. The LH and HU
fast-kicks are then used to reverse this procedure so that the orbit returns
to the equilibrium point, which corresponds to the athlete completing the
dive in pure somersaulting motion.
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time 71 + 75 spent in pure somersaulting motion. The entries in Table [I] called “Somersault
rate” and “Twist rate” give the amount the somersault and twist angle increases per second,
respectively.

Now we are going to develop ideas that will lead towards the new 513XD dive. An
interesting point to note is that when the HU fast-kick in stage 4 is performed at a different
time it has a different effect. Preforming the kick at time 73 leads to a point we denote
by Ls5(0;73), which will then be taken as the initial point of stage 5 in the 9-stage dive.
The curve L5(0; 73) is shown as a dashed curve in Figure [7} From this figure it is already
clear that if we perform the kick near the point opposite to the initial point L; it has
the opposite effect: instead of decreasing L, it increases L,. A larger L, implies a faster
twisting motion, and hence the idea is born to try to make this rotation as fast as possible.
To determine the fastest possible twisting we plot the energy E5(73) of stage 5 expressed
as a function of time 73 when the kick is performed in stage 3, see Figure[8] The maximum
possible energy is E5(73/2) = 0.0885[2. This minimises the period of twist and allows the
athlete to perform additional twists. To further improve the faster twisting somersault
rate we can replace the HU fast-kick with HL, which uses shape change from both arms to
essentially double the effect. Figure ] presents a 9-stage dive sequence that takes advantage
of this result, and the orbit of the faster twisting somersault is shown in Figure In order
to use to compute the total somersault amount given n twists, we combine the nine
stages to obtain

9
2E;T;
(30) Adigac = Y, == = S(Bs/P, Jy) = (n = 1)S(Es /1%, Jy),
=1
i odd

where the solid angle S is computed using , energy E; with and 7; by for the
twisting somersaulting motions. We can then set A¢yicx = 2mm for m somersaults and
solve for the total pure somersaulting time 7 + 79, and provide the 9-stage dive summary
in Table 2

Comparison of Table [I] with Table |2 shows that for n > 1 twists the diver completes
the twists significantly faster with the 9-stage dive mechanic, resulting in more time spent
in pure somersaulting motion to complete the desired m somersaults. For the total times
of the 5-stage and the 9-stage dive we have 75 < Tg when n > 1. For both dives it
appears counterintuitive that performing more twists will take less time. This is related
to the fact that our somersault is performed in layout position and hence J;, < I, ,.
Using a more complicated model allowing the athlete to enter pike or tuck position for the
pure somersault would reverse the inequality between the moments of inertia, and hence
lead to dives which take longer when increasing n. We also observe in Table [2| that the
somersaulting rate of stage 5 is only slightly slower than stage 3 (and stage 7), while the
twisting rate nearly triples as a result of J; , = J;, > J; ..

For given m and n the time for each stage as listed in tables [1| and [2| must be positive,
otherwise the dive with the given m and n is impossible, even in the kick model. For the
5-stage dive (table 1)) the maximal n for m = 1.5 is 5, while for the 9-stage dive (table
the maximal n for m = 1.5 is 12. These numbers for n are unrealistically high, which is a
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result of the kick-approximation. In reality the shape change takes a considerable amount
of time, and in the next section we use our theory together with numerical integration to
show that 5 twists are possible in a 9-stage dive with realistic shape changing times.

5. THE 513XD DIVE

We now present the 513XD dive consisting of 1.5 somersaults and 5 twists with realistic
shape changes building on the mechanism described in the previously section. The dive
mechanics are given in Figure [9] as before, but we will now resort to numerics when solving
the equations of motion during shape change. For the 513XD dive simulation we
choose | = 100, 7; even = 1/4 and use a cubic spline for the shape angles to ensure the
velocities are continuous throughout the dive. A video of the simulation of the 513XD dive
is available in an online supplement at ...

The diver takes off with L;(t) as before, and the trajectory Ly(t) is obtained by solving
(11) numerically. We establish the rigid body orbit L3(¢) with (14), which differs from
because La(12) determines the energy and phase shift instead of Ry(—X)L1(71) as
previously. The trajectory L4(t) is obtained by solving numerically with initial con-
dition L3(73), meaning the end point L4(74) can be used to compute the next stage’s
energy with different timing 73 (see Figure where we treat Es as a function of 73).
The ideal 73 gives rise to the maximum energy FEj5 corresponding to the minimum period
of twist, hence producing the optimal faster twisting somersault with orbit Ls(t). To re-
vert to pure somersaulting motion we first find the timing 75 (up to mod75) that satisfies
E;(75) = Es3, meaning Lg(t) leads to L7(t) = L3(t + ¢7) for some phase shift ¢7 (see Figure
to uncover the desired timing 75). We repeat this procedure to find the timing 77

Stage Energy E; Somersault rate Time spent 7;
Shape Period T; Twist rate Orbit L;(t)
1 0.02431? 0.04852( (64.7452m — 6.5082n — 12.9073)/1
uu 00 0 (0,1,0)"
3 0.04527> 0.05548l 16.9805/1
DU  33.9610/1 0.18501/ R,L(t; B3, Jy, T5/4)
5 0.18351? 0.055471 11.3854(n —1)/1
UD  11.3854/1 0.551871 Rglﬁ(t; Es, Ji,315/4)
7 0.04527> 0.05548l 16.9805/1
DU  33.9610/1 0.18501/ R,L(t; E3, Jy, 3T5/4)
9 0.02431? 0.048521 (64.7452m — 6.5082n — 12.9073) /1
[19) 00 0 (0,1,0)

Total time Tg = (129.4905m — 1.6310n — 3.2389)/1
TABLE 2. The innovative twisting somersault consisting of m somersaults
and n twists that follows the 9-stage dive mechanic given by Figure @
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that yields FEg(77) = E7, hence returning the athlete to pure somersaulting motion where
Ly(t) = L1 (t) = (0,1,0)".

The trajectory L(t) shown in Figure gives rise to the faster twisting somersault
consisting of 5 twists, and the 1.5 somersault constraint determines the total pure somer-
saulting time 7 +79. To find this, we apply Cabrera’s formula to the individual stages
and sum up to obtain

9
A 2F;7;
(31) L&%:—P+zll

where E; is defined by

9
(32) B= 130 [ @0 - ) - Lo e,
i=1

and may be interpreted as an averaged energy during a shape changing phase. Since all
other quantities are known we can solve for 71 +79. The surface area A is illustrated by the
blue shaded region in Figure which can be found by numerically computing multiple
line integrals appropriately partitioned on the L-sphere as shown in Figure The sub-

areas are computed using the line integral A; = 7{ F(x(s))-&(s)ds, where ¢ = (x,v, 2)?,
C;

lz t .
F(x) = Zrar (y, —, 0) and each loop C; consists of a segment from the equator, one
T Yy
Es(73) E7(75)
2000 ! 4000+
[]
i
1500 |} 3000¢
i
1
1000 | 2000 ;
i i
i i
500! i 1000f i
i E; :
1 1
O N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | T3 O 1 1 1 1 | TS
0 Ts/4 Ts/2 3T3/4 T3 Ts Ts/4 Ts/2 3Ts/4 Ts
(A) Energy FEs as a function (B) Energy FE7 as a function
of 73, where the maximum is of 75, where the minimum is
FEs = 1801.23 occurring at 13 = E; = 460.012 occurring at 75 =
0.05647T35. 0.79847T5.

FiGURE 11. The family of possible energies moving into and out of the
faster twisting somersaulting motion. The vertical dashed lines show the
timing of maximal and minimal energies, respectively.
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(A) 513XD dive on L-sphere.

‘—ﬁﬂ‘ ‘ ‘—571‘ ‘ ‘—4‘171‘ ‘ ‘—'37r‘ ‘ ‘—%n‘ o Lt

\/\/
Ls(t)

(B) Mercator projection with the mod 27 removed. The black points partition the trajectory into the
nine different stages of the dive, and the blue shaded region gives the surface area A bounded by the
orbit L and equator.

FIGURE 12. The evolution of L(t) corresponding to the 513XD dive.

or two vertical arcs and L;(t). Performing the computation we find that the only non-
Ti .

zero contribution comes from L;(t), hence A; = / F(L;(t)) - L;(t)dt. Evaluating the
0

8
integrals yields the results shown in Figure [13] resulting in A = Z A; = 151392. We give

i=2
the 513XD dive summary in Table 3| and plot the components of L(t) and ¢(¢) in Figure
We find that L, is anti-symmetric, while L, and L, are symmetric about T513xn/2.
We solve the equations of orientation given in Appendix [C| numerically and plot the
result in Figure which shows qo(t) = q2(T513xp — t) and q1(t) = —q3(T513xp — t). The
symmetry is a result of distributing 7 and 19 equally.
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L:

(A) Ay = 2406.62. (B) As = 722.037. (c) Aq = 23770.8.

FIGURE 13. Due to symmetry Ag = A4, A7 = As, and Ag = As. The
sub-area As = 97593.3 can be determined from Fig.

Table [3| can be considered the main summary of the new 513XD dive. The subscripts
denote the stage as usual. The table gives the energies F;, which are averaged as defined
in for the shape changing phases 2, 4, 6, 8. For the rigid phases 1, 3, 5, 7 the period of
twisting motion T; are given as defined in , while for the shape changing phases they are

Stage | Shape E; T; | AJIP | 2B /L] my | oy
1 UU | 242.6 oo | (L.220 0 1.07 |0.17| O
LU 314.7 | 1.042 | 0.250 | 0.24 1.57 |0.21|0.24
DU | 460.0 | 0.333 | 0.019 | 0.07 0.17 |0.02 | 0.06
HL 732.5 1 0.313 | 0.250 | 2.38 3.66 |0.20 | 0.80
UD | 1801.2 | 0.115| 0.322 | 9.76 11.60 | 0.29 | 2.79
LH 732.5 1 0.313 | 0.250 | 2.38 3.66 |0.20 | 0.80
DU | 460.0 | 0.333 | 0.019 | 0.07 0.17 |0.02 | 0.06
HU | 314.7 | 1.042 | 0.250 | 0.24 1.57 [0.21]0.24
UU | 242.6 oo | 0.220 0 1.07 |0.17| O
sum: 0.180 | 15.14 | 24.56 | 1.50 | 5.00
TABLE 3. Summary of the 513XD dive with [ = 100. Shown are the energies
E;, periods T;, and times 7; per stage i. For the shape changing phases
2,4,6,8 they are given by appropriate averages. The next columns give
geometric phase and dynamics phase, and the two final columns give the
number of somersault and the number of twists. In the final row the total are
shown for time, geometric phase, dynamic phase, such that 24.56 — 15.14 =
2m 1.5 gives the desired 1.5 somersaults, which is also given in the m; column.

The final entry is the number of twists achieved.

© 00 O Uik W
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defined by dividing the time 7; by the amount of twist n;. The next column gives the length
7; of stage i. The next column gives the geometric phase per stage. It should be mentioned
that technically speaking the geometric phase is only well defined for closed loops, and hence
not for individual stages. The areas A; for the individual stages are not gauge invariant;
however, in our case a natural choice of gauge is to put the reference segment fixed in the
trunk of the model, and the numbers given for the individual stages are with respect to this
choice. The last three columns are quantities that are derived from the earlier quantities:
the dynamic phase given by 2E;7;/l, the number of somersaults m; per stage (given by the
difference of dynamic phase and geometric phase divided by 27), and the number of twists
n; per stage. It is interesting to compare the entries of the full dive to those of the kick
model as given in table [2| Clearly energy and period for the rigid phases are very similar,
which explains why the kick-model is a good approximation. Such agreement cannot hold

(B) The orientation expressed as the quaternion q(t).

FIGURE 14. The components of L(t) and ¢(¢) for the 513XD dive, where
q(t) is obtained by numerically solving given in Appendix [C| The ver-
tical dashed lines separate the different stages of the dive.
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for 7;, since in the full model the shape changing times 75 = 74 = 7 = 73 = 0.25 must be
absorbed in order to keep the total time the same.

The airborne time 7513xp = 1.8 is slightly longer than the typical 1.5-1.6 second flight
time from the 10m platform, but as the angular momentum ! = 100 chosen is quite con-
servative we can lower Ts13xp with a larger [ value. Furthermore, over 0.4 seconds is spent
in the layout position (I, ~ 20) to achieve the desired somersault amount, which can be
significantly reduced if the model incorporates shape changes allowing the athlete to enter
pike (I, = 6) or tuck (I, ~ 4) positions. This leads us to conclude that real world athletes
can in principle execute the 513XD dive, and this would revolutionise the sport of diving
if successfully performed in competition.

6. FROM PURE SOMERSAULT TO PURE TWIST

The 513XD dive uses an extra pair of shape changes in addition to the 5-stage dive to
enter and exit the faster twisting somersaulting motion. For impulsive shape changes we
found that the optimal fast-kick timing is after a half twist, so there is no reason why this
procedure cannot be repeated to further speed up twist in the twisting somersault. We
now show how an athlete taking off in pure somersaulting motion (Figure [15a)) can use a
sequence of impulsive shape changes to enter a state of pure twist (Figure , assuming
a sufficiently large overall time. For the first time this question has been discussed in

Yeadon’s thesis [18].
The pure twisting motion corresponds to the steady rotation I; = (0,0, —1)! with period

(33) Ty = 2rl,../l = 6.2553/L.

(A) Pure somersaulting state. (B) Pure twisting state.

FiGURE 15. The pure somersaulting and pure twisting states.
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FIGURE 16. The blue outer orbit corresponds to L7(¢), the red inner orbit
represents Lr(t) and the red dashed orbit Lg(0;77) is the family of possible
initial conditions generated by HL fast-kick from L7 (77). The black vertical
lines show the impulsive shape change transition from L7(t) to Lg(t) orbit
and from Lpr(t) to l;.

The twists are in the counterclockwise direction and the energy

_ 7271 _ 2
(34) By = I’I;}}/2 = 0.50221

FiGURE 17. L-sphere projection onto the xy-plane for the pure somersault
to pure twist dive.
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is maximal for the UU shape.

The athlete begins by performing fast-kicks after half twist intervals to speed up the
twisting motion, but beyond a certain point (after stage 7 with L7(¢)) no further improve-
ment is made and the athlete needs to adopt a new strategy. Suppose Lr(t) corresponds
to the rigid body orbit with shape UH that contains the point Lr = R, (X)l;, then we
know a UH fast-kick at this point will lead to pure twisting motion. Similarly, let Ly ()
correspond to the symmetric case with point Lz, = R,(—X)l;. Our goal is now to find (if
possible) either a HL or LH fast-kick timing that brings the athlete into Lr(t) or Ly (t)
orbit, respectively. We show in Figure 16| that there are two points of intersection between
Ly(0;77) and Lg(t), where the earlier timing occurs at 77 = 3.4946/l. The athlete then
remains on the Lg(t) orbit for 79 = 4.0735/1 to reach the designated point Lp before exe-
cuting the UH fast-kick to enter a state of pure twist. The complete transition from pure
somersault to pure twist is given in Table 4] Although the realistic analogue of this cannot
be performed in platform diving, it nevertheless has interesting applications. For example,
it may be possible to achieve momentary pure twist in sports that have larger airborne
times, such as high diving and aerial skiing. Also, the conversion from pure somersault to
pure twist (and vice-versa) has applications in space manoeuvrability where airborne time
is not a factor.

Stage  Energy E;  Time spent 7;  Initial condition L;(0)

Shape  Period T; Twist rate Orbit L;(t)
1 0.02437> — l
uu 00 0 (0,1,0)¢
3 0.04527> Ts/2 R (—X)1
DU 33.9610/1 0.185011 R,L(t; E3, Ji, T /4)
5 0.18351° Ts/2 —Ra(X +Y+2p)l
UD 11.3854/1 0.551871 R, 'L(t; Es, Jy, 3T5/4)
7 0.37861> 3.4946/1 Re(—X —2Y — 4p)l
DU 7.5855/1 0.82831 R,L(t; E7, Ji, Ty /4)
9 0.49961° 4.0735/1 (—0.130, —0.174, —0.976)*
UD 6.5410/1 0.96061 R, L(t; Ey, J;,4.1028)
11 E; = 0.5022/> — l;
UU T, =6.2553/1 1.00451 (0,0, —1)*

TABLE 4. Sequence of impulsive shape changes to transition from a state
of pure somersault (stage 1) to a state of pure twist (stage 11).



A NEW TWISTING SOMERSAULT - 513XD 23

7. ACKNOWLEDGEMENT

This research was supported in part by the Australian Research Council through the
Linkage Grant LP100200245 “Bodies in Space” in collaboration with the New South Wales
Institute of Sports.

APPENDIX A. MODEI. PARAMETERS

segment partitions mass (kg) geometry (cm)
head 5.575 sphere: r =11
torso 32.400 cuboid: 18 x 30 x 60
left thigh 8.650 cylinder: r=8 h =43
B right thigh 8.650 cylinder: =8 h =43
b | left lower leg 4.086 | cylinder: r=055 h=43
right lower leg 4.086 cylinder: r =55 h=43
left foot 1.436 sphere: r =7
right foot 1.436 sphere: r =7
left upper arm 2.356 cylinder: r=5 h =30
B left forearm 1.781 cylinder: r=4.5 h =28
left hand 0.523 sphere: r=25
right upper arm 2.356 cylinder: r=5 h=230
B, right forearm 1.781 cylinder: r=4.5 h=28
right hand 0.523 sphere: r =25

TABLE 5. Frohlich’s twelve segment model of a male athlete that is 1.82 m
in height and weighs 75.639 kg.

We combine multiple body parts of Table 5| to produce the three segments denoted by
B; for i € {b,1,r}, which represent the body, left arm and right arm, respectively. The
numerical values of the mass and tensor of inertia of segments in our model are

my = 66.319 I, = diag (14.204, 13.867, 0.612)
my = m, = 4.660 I, = I, = diag (0.176,0.176, 0.005).
The collection of {j Z} that specify the geometry of our model are
J, = (0,0.2,0.5196)¢  J, = (0,-0.2,0.5196)!  J. =J" = (0,0,0.3647)".
In the layout position the athlete has shape («y, o) = (7, 7) and the tensor of inertia is

Is = diag(21.3188,20.6091,0.9956).

In the twist position the shape is either (oy, a,,) = (0, 7) or (o, o) = (,0), which produces
the same diagonalised tensor of inertia

Jy = diag(18.3745,17.6925,0.9679).
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APPENDIX B. COMPONENTS OF I AND A

Evaluating with the abduction-adduction plane of motion restriction simplifies the

I.,. 0 0
tensor of inertia I to the form I = 0 I, I,. |. Explicitly, the components are
0 I, I..

.

« = ag — 2ay cos, (aq, o) + 2ag sin, (o, @) — 2a3 cos (ag + o)

~

yy = as — 2ay cos, (o, a,) + ag cos, (20, 2a,) — 2a3 cos oy €os oy
I.. = ag + 2agsin, (oq, o) — a4 cos, (20, 2a,) + 2a3 sin oy sin o,
Iy, = azcos_(oy, ) —arsin_(oq, ) + agsin_ (204, 2) — azsin (o — o),
where
cos, (aq, ) = cos ay + cos ay sin, (aq, o) = sin oy + sin a,,
cos_(ay, o) = cos o — €os sin_ (o, o) = sin g — sin a,.
Similarly, () simplifies to A = (A;dy + Ay, 0,0)" where

A = a7 —ajcosaq + agsinag — ag cos (o + a)

A, = —a7 + a1 cos a, — ag sin o, + ag cos (o + ).
The constants ag, a1, ...,ar are determined by the collection of {mi, fi, jf} and are
ap = 18.298 ap = 0.774 as = 0.340 az = 0.038
ay = 0.376 as = 16.836 ag = 1.748 a7y = 0.758.

APPENDIX C. EQUATIONS OF ORIENTATION

The orientation can be tracked from the solution of the equations of motion . We
will represent the orientation with unit quaternions as they provide an elegant form of
encoding the angle-vector information. Consider a clockwise rotation of § about the unit
vector w, which can be presented with the unit quaternion ¢ = go+¢q = cos(6/2)+usin6/2,
where the vector g = q1% + g2J + g3k specifies the imaginary parts. To rotate an arbitrary
vector v by the quaternion ¢, we first treat the vector as a pure quaternion expressed as
v = 0 + v and then apply the transformation p = qvg, where § = qo — q is the quaternion
conjugate. The result is a pure quaternion p = 0+ 2(v - q)g + (2 — q - @)v — 2qov x g,
which is linear in v and can therefore be rearranged to obtain the vector

(35) p=[2(qq" + q0q) + (¢ — q- @)1] v.

Now the coefficient of v is precisely the rotation matrix R, so substituting it in Q=RR
and removing the hat operator gives

(36) Q=2 -2 —¢ @ « n,
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where €2 is a known vector obtained from solving the equations of motion . Asqgisa
unit quaternion we can incorporate the constraint gogo + q1¢1 + g242 + ¢3¢ = 0 with
to derive the equations of orientation

.1/ 0 —Qf
(37) i=5( g “a )0

Together with and , a complete description of the dynamics for a system of coupled
rigid bodies can be given.
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