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Abstract. We present the mathematical framework of an athlete modelled as a system
of coupled rigid bodies to simulate platform and springboard diving. Euler’s equations
of motion are generalised to non-rigid bodies, and are then used to innovate a new dive
sequence that in principle can be performed by real world athletes. We begin by assuming
shape changes are instantaneous so that the equations of motion simplify enough to be
solved analytically, and then use this insight to present a new dive (513XD) consisting of
1.5 somersaults and 5 twists using realistic shape changes. Finally, we demonstrate the
phenomenon of converting pure somersaulting motion into pure twisting motion by using
a sequence of impulsive shape changes, which may have applications in other fields such
as space aeronautics.

1. Introduction

The twisting somersault is a visually stunning acrobatic manoeuvre featured in numerous
Olympic sports. Within diving alone there is a wide selection of books available to assist
athletes and coaches of all skill levels, e.g. [3, 7, 10, 14, 15, 16]. Coaches are now seeking to
better understand the biomechanics behind the aerial manoeuvres associated with a good
dive to equip their athletes with a leading edge in competition. The purpose of this paper is
to use the newly established mathematical framework developed in [4, 6, 17] to present the
innovative 513XD1 dive consisting of 1.5 somersaults and 5 twists that in principle can be
performed by world class athletes. In doing so, we develop a mathematical understanding
of the effects of shape change on the dynamics of the system.

The physics behind the twisting somersault was first correctly described in detail by
Frohlich in [8], where he explains how a diver taking off in pure somersaulting motion
can utilise shape change to initiate twist mid-flight. Since then, Yeadon has extensively
analysed aerial movement of the human body in [19, 20, 21, 22] and the biomechanics of
the twisting somersault in [23, 24, 25, 26]. The simplest mechanism for producing the
effect of twisting somersault is found in [4], which uses a rotor instead of arms to initiate
and terminate twist. As the shape is not physically changing, the system is simple enough
so that an analytical formula can be established connecting the number of somersaults,
twists and airborne time. The model in [6] incorporates shape change to resemble real
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1The FINA diving code 513XD has the following interpretation: the initial 51 stands for ”twisting
forward”, the following digits are the number of half-somersaults (3) and the number of half-twists (10=X),
and the final letter D stands for ”free” position.
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2 A NEW TWISTING SOMERSAULT - 513XD

dives, however simplicity is kept by fixing nearly all segments relative to the torso, with
the exception of the left shoulder joint. In this paper we build on the results established
in [6] and allow movement in both arms with the purpose of presenting the innovative
513XD dive. To date, no athlete has attempted a 513XD dive in competition, nor has
the International Swimming Federation (FINA) even assigned a degree-of-difficulty to it.
By simulating the 513XD dive we hope to provide coaches and athletes with insight and
motivation so that the dive may one day be executed in competition.

An original simplified version of the 513XD dive was discovered by the 2nd author
in November 2013, while on sabbatical in Boulder, Colorado. The details of the dive
and important improvements were worked out in the PhD thesis [17] of the first author.
The mathematical core of our analysis is the use of geometric mechanics to achieve a
conceptual understanding of successful dives. This allows for the description of the motion
in a symmetry reduced space (i.e. the body frame), from which the motion in full phase
space can be reconstructed using a formula involving a so called geometric phase and a
dynamic phase. Even for rigid body motion such a description is relatively new [13], and the
extension to non-rigid bodies [5] is quite recent. In [6] we have extended their formulas to
remove a mod2π operation; this extension is essential for application to diving. A related
but different extension has been introduced earlier in [2]. Using these modern tools from
geometric mechanics we are thus able to obtain a full understanding of twisting somersault,
and as a result can propose a dive that has never been performed as of the end of 2016.

The structure of the paper is as follows: in section 2 we introduce the model of the athlete
consisting of three segments, and establish the overall tensor of inertia I and momentum
shift A of the system. In section 3 we develop the mathematical framework by deriving the
equations of motion and presenting the solutions to the dynamics of rigid body motion. In
section 4 we use impulsive shape changes to construct the faster twisting somersault, and
compare our findings to the twisting somersault described in [6]. In section 5 we present
the 513XD dive consisting of 1.5 somersaults and 5 twists using realistic shape changes. We
show that this dive can in principle be executed by real world athletes, and if successfully
performed in competition would revolutionise the sport of diving. Finally, in section 6 we
demonstrate it is possible for an athlete to take-off in pure somersaulting motion and use a
sequence of impulsive shape changes to enter a state of pure twist. This shows the athlete
can continually apply shape changes to speed up twist in the twisting somersault, limited
only when pure twisting motion is achieved.

2. Model of the athlete

In the literature there are several mathematical models of the human body varying in
complexity, ranging from Hanavan’s model [9] comprised of simple geometric solids such as
ellipsoids and truncated cones, to Jensen’s model [11] that involves stacking thin elliptical
disks atop one other for better approximation of each segment. However, when examining
the dynamics only the moments of inertia, centre of mass and joint positions of each
segment come into the play, leaving all of the complicated geometries hidden within the
system. For this reason we are not overly concerned with the geometry and thus base
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Figure 1. Visualisation of body segments, body frames, centre of mass
and joint vectors. We note that the origin of FC lies close to Fb in reality,
so for illustration purposes we have deliberately moved the origin of FC to
clearly display the local body frames and vectors. The lower legs and feet
have also been omitted for this reason.

our three segment model off Frohlich’s [8], where his model parameters are presented in
Appendix A. The mass mi of each segment Bi is evaluated by summing up the masses of
the subsegments given by Frohlich’s [8] model, and we denote M as the total mass of the
athlete. From here on we will use index i ∈ {b, l, r} to refer to body segment Bi.

For each Bi a local body frame Fi is attached with its origin coinciding with the centre
of mass and coordinate axes pointing in the direction of the principal moments of inertia,
where the tensor of inertia Ĩi is computed using the parallel axis theorem. The joint

vector J̃
j
i is written in the local body frame Fi so that it is constant, and the geometric

interpretation is the position vector from the centre of mass of Bi to the joint location that

connects to Bj . We illustrate body segments Bi, frames Fi, joint vectors J̃
j
i and centre of

mass vectors Ci in Figure 1, and provide the numerical values of the collection of Ĩi and

J̃
j
i for our specific model in Appendix A.
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The coupled rigid body system has a spatial frame FS and overall body frame FC , where
both frames are chosen to have their origin co-moving with the overall centre of mass of the
system. Now the coordinate axes of FS are fixed in direction, and without loss of generality
we choose to align the axes of FC with the torso specified by Fb. We will use lowercase
letters to denote quantities in FS , uppercase letters in FC and uppercase letters with tilde
in Fi. Let V be any arbitrary vector observed in FC , so that the very same vector in FS
is given by v. The transformation between the two frames is given by v = RV , where
R = R(t) is the rotation matrix that specifies the orientation of the system. The shape
of the system is specified by the collection of rotation matrices {Ri}, where based on our

choice of FC we have Rb = 1. To express an arbitrary vector Ṽ i written in Fi to the
overall body frame FC , we use the transformation V = Ci +RiṼ i.

We now want to express Ci in terms of the collection of geometry {J̃ ji} and shape {Ri}.
Provided that Bi and Bj are two connected bodies we have

(1) Ci +RiJ̃
j
i = Cj +RjJ̃

i
j ,

which can be verified with Figure 1b. By construction
∑
i

miCi = 0, so using (1) to solve

for a reference centre we get

(2) Cb =
1

M

∑
i∈{l,r}

mi(RiJ̃
b
i − J̃

i
b),

which can be substituted back in (1) to obtain

(3) Ci = Cb + J̃
i
b −RiJ̃

b
i .

Note in the case of i = b we have Rb = 1, so we simply retrieve (2) as expected.
As derived in [6], for a system of coupled rigid bodies we have

I =
∑
i

(
RiĨiR

t
i +mi[|Ci|21−CiC

t
i]
)

(4)

A =
∑
i

(
miCi × Ċi +RiĨiΩi

)
,(5)

where I = I(t) is the tensor of inertia of the system and A = A(t) is the momentum shift
generated by shape change. The angular velocity Ωi for Bi is relative with respect to Bb,
and is defined such that RtiṘiV = Ω̂iV for some arbitrary vector V .

If we restrict the arm movement to be about the abduction-adduction plane of motion
as shown in Figure 1, then the shape of the athlete can be completely specified with
just two angles (αl, αr) ∈ [0, π]2. We let (αl, αr) = (0, 0) correspond to the anatomical
neutral position where the arms are down by the side, and (αl, αr) = (π, π) be the layout
position where both arms are pointing straight up. In terms of rotation matrices we have
Rl(αl) = Rx(αl) andRr(αr) = Rx(−αr), whereRx is the elementary rotation matrix about
the x-axis and the minus sign accounts for the opposite direction of right arm rotation when
compared to the left arm. For simplicity we will introduce a two letter arm code to describe
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the actions of the left and right arms, respectively. When the arm is stationary relative to
the torso we use U for the up position and D for the down position, or if the arm is in motion
we use H when it is being raised and L when it is being lowered. E.g. the layout position is
denoted by UU as both arms are pointing straight up, and the anatomical neutral position
is denoted by DD as both arms are down by the side. Evaluating the tensor of inertia I
with these shape change restrictions simplifies it to the form

(6) I =

 Ixx 0 0
0 Iyy Iyz
0 Iyz Izz

 ,

and similarly the momentum shift A reduces to

(7) A =
(
Alα̇l +Arα̇r, 0, 0

)t
.

The components of I and A are explicitly listed in Appendix B. In general the tensor of
inertia I is non-diagonal, but there is always a coordinate transformation

(8) J = diag (Jx, Jy, Jz) = R−1p IRp

with some rotation matrix Rp that makes J diagonal in some alternate body frame FP . In
the block-diagonal case of (6) we have

(9) Rp = Rx(p) where p =
1

2
arctan

(
2Iyz

Iyy − Izz

)
.

We denote Is = diag(Is,x, Is,y, Is,z) as the tensor of inertia for the layout position given by
shape UU, and Jt = diag(Jt,x, Jt,yJt,z) as the diagonalised tensor of inertia for the twist
position given by shape DU and UD. We want to emphasise that Jt is written in FP , and
the transformation (8) can be used to rewrite tensors in FC . The numerical values of Is
and Jt are specified in Appendix A.

3. Equations of motion

As shown in [6] the angular momentum vector L of a coupled rigid body system can be
expressed as

(10) L = IΩ + A,

where I is the tensor of inertia, A is the momentum shift, Ω is the angular velocity and all
quantities are viewed from FC . In the absence of shape change I is constant and A = 0
because it is linear in the shape velocities, thus we recover the well known formula L = IΩ
for rigid body dynamics. To derive the equations of motion for coupled rigid bodies we take
the time derivative of l = RL, which gives l̇ = ṘL+RL̇ = 0 and use RtṘV = Ω̂V = Ω×V
to express the result as

(11) L̇ = L×Ω = L× I−1(L−A).

When there is no shape change (which implies that A = 0 and I = const) there are the
classical six equilibria of steady rotations, which are illustrated in Figure 2 for symmetric
shape UU with spatial angular momentum vector l = (0, l, 0)t. For asymmetric shape

Administrator
波浪线



6 A NEW TWISTING SOMERSAULT - 513XD

(a) Cartwheel L = (l, 0, 0)t (b) Somersault L = (0, l, 0)t (c) Twist L = (0, 0, l)t

Figure 2. Each diagram above corresponds to steady rotations, where the
direction can be either clockwise or counterclockwise resulting in a total of
six equilibria. To distinguish between the front and back of the athlete’s
torso, the back has been shaded black.

(αl, αr) the equilibrium points are rotated by Rp given by (9), which is due to the diago-
nalisation of I shown in (8). In our model of the athlete the diagonalised tensor of inertia
J = diag (Jx, Jy, Jz) has components Jx > Jy > Jz for all (αl, αr) ∈ [0, π]2. It is a classical
result that rotation about the axis of the intermediate moment of inertia is unstable, see,
e.g. []. Thus cartwheeling and twisting motions are stable while somersaulting motion is
unstable irrespective of the arm positions.

In the absence of external forces and without shape change the orbit L is governed by
conservation laws, where the total energy E and spatial angular momentum vector l is
constant. As the rotation matrix Rp can be used to diagonalise an arbitrary tensor I, we
will assume without loss of generality that FC is aligned with the principal moments of
inertia and rotates by (9) whenever necessary. This enables us to write L = (Lx, Ly, Lz)

t

and I = diag(Ix, Iy, Iz) to avoid introducing new symbols for these quantities in another
body frame. The angular kinetic energy E = 1

2ΩtIΩ defines a surface known as Poinsot’s
ellipsoid, and rewriting this ellipsoid in terms of L produces what we refer to as the energy-
inertia ellipsoid

(12) E =
L2
x

2Ix
+
L2
y

2Iy
+
L2
z

2Iz
.
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As the angular momentum l is constant in FS the length is preserved in FC , which means
L must lie on the L-sphere with equation

(13) l2 = L2
x + L2

y + L2
z.

Thus the trajectory of L must lie on the intersection between the energy-inertia ellipsoid
(12) and L-sphere (13), which in general forms two closed curves. The time evolution on
these curves can be expressed in terms of Jacobi elliptic functions, see, e.g. [1, 12], which
we write as

(14) L(t;E, I, c) =
(
Lx(t), Ly(t), Lz(t)

)t
where the parameters on the right hand side are suppressed. Specifically, when l2I−1y <

2E < l2I−1z the components are

Lx = s

√
Ix(l2 − 2EIz)

Ix − Iz
cn (τ, k2) Ly =

√
Iy(l2 − 2EIz)

Iy − Iz
sn (τ, k2)(15)

Lz = −s

√
Iz(2EIx − l2)

Ix − Iz
dn (τ, k2)

with

τ =

√
(Iy − Iz)(2EIx − l2)

IxIyIz
(t+ c) k2 =

(Ix − Iy)(l2 − 2EIz)

(Iy − Iz)(2EIx − l2)
,(16)

and the two constants c (phase shift) and s (direction that is either ±1) that appear are
chosen to satisfy the initial conditions. As we will only be using counterclockwise twists
in our computations, s = +1 always, and thus we omit this constant in the parameters of
(14). It is important to note the minus sign in (15) for Lz occurs because Ix > Iy > Iz
for the diver, and that had the inequalities been reversed, i.e. Ix < Iy < Iz, there would
be no minus sign. As the Jacobi elliptic functions are periodic in τ with period 4K(k2) =

4

∫ π
2

0

du√
1− k2 sin2 u

, the period of the orbit is

(17) T (E, I) = 4K(k2)

√
IxIyIz

(Iy − Iz)(2EIx − l2)

where K(k2) is the complete elliptic integral of the first kind. When l2I−1x < 2E < l2I−1y ,
the results presented in (15), (16) and (17) need to be modified by swapping Lx ↔ Lz
and Ix ↔ Iz. In the limiting case when 2E → l2I−1x the energy becomes minimal and the
two closed curves shrink to the points given by (±l, 0, 0). Similarly, when 2E → l2I−1z the
energy becomes maximal and the curves shrink to the points at (0, 0,±l). When 2E = l2I−1y
the Jacobi elliptic functions reduce to hyperbolic functions given by

Lx = s1l

√
Ix(Iy − Iz)
Iy(Ix − Iz)

sech τ Ly = s2l tanh τ Lz = −s1s2l

√
Iz(Ix − Iy)
Iy(Ix − Iz)

sech τ,(18)



8 A NEW TWISTING SOMERSAULT - 513XD

where the two signs s1 and s2 distinguish the four trajectories resulting from the intersection
of the L-sphere and energy-inertia ellipsoid shown in Figure 3. The sign s2 determines
whether we are on the stable or unstable manifold of the unstable equilibrium points, and
s1 distinguishes which of the two branches of the manifold we are on. From the unstable
equilibrium points it is easy to move into the twisting region by a small kick increasing Lz,
which will initiate twisting motion travelling all the way to the other side of the sphere
before returning.

Let l = (0, l, 0)t be the spatial angular momentum in FS , and suppose the athlete is
rigid in twist position with shape DU so that the diagonalised tensor of inertia is Jt =
diag(Jt,x, Jt,y, Jt,z). Now if the initial angular momentum is

(19) L3(0) = Rx(−X )l

then once the quantity is rewritten in FP the energy can be computed with (12) to obtain

(20) E3 = l2
(
J−1t,y cos2 (p+ X ) + J−1t,z sin2 (p+ X )

)
/2.

With the tensor of inertia and energy known we can use (14) to express the orbit as

(21) L3(t) = RpL(t;E3, Jt, T3/4),

where T3 = T (E3, Jt) is the period of twist in the twisting somersault computed from (17)
and the phase shift constant c = T3/4 is chosen to satisfy the initial condition (19). In
Figure 4 we illustrate the orbit (21) showing a slight tilt due to Rp, which is the rotation
matrix needed to align FP with FC .

Figure 3. Intersection of the energy-inertia ellipsoid with L-sphere when
2E = l2I−1y results in four trajectories emerging from the poles (0,±l, 0).
The separatrices divide the dynamics into the twisting somersault and wob-
bling somersault regions as indicated.
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For arbitrary energy E and tensor of inertia I the period T (E, I) given by (17) specifies
the amount of time required to complete a loop around the L-sphere. This corresponds to
the rigid body physically completing a full twist with some amount of somersault ∆φ, which
cannot be directly observed on the L-sphere but can be recovered through reconstruction
of the full dynamics. Montgomery [13] writes

(22) ∆φ =
2ET

l
− S mod 2π

which partitions the change in orientation ∆φ into the sum of the dynamic phase 2ET/l
and geometric phase S. While Montgomery’s formula is only applicable to rigid bodies,
Cabrera [5] generalises the result to

(23) ∆φ = −S +
1

l

∫ T

0
I−1(L−A) ·L dt mod 2π

for self-deforming bodies, where the tensor of inertia I and momentum shift A are now
functions of t, and S is the solid angle enclosed by the orbit L. As the momentum shift
A is proportional to the shape velocities, Cabrera’s formula (23) reduces to Montgomery’s
formula (22) in the absence of shape change. By keeping the surface area A (not to be
confused with the momentum shift A) lying to the left of the oriented orbit L we have the
relation to the solid angle S = A/l2. To remove the mod 2π essential in distinguishing the
amount of somersault, we appropriately define the surface area A to be the area between
L and the equator, see [6] and [17] for more details. Intuitively, we expect more geometric
phase in a faster twisting somersault because there is no geometric phase in the limiting
case of no twist, and this is in agreement with our definition. The derivation of the solid

Figure 4. The orbit L3(t) corresponding to twisting somersaults in the
counterclockwise direction.
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angle S can be found in [6], here we simply state

(24) S(E/l2, I) = 4

√
Iy

IxIz(Iy − Iz)Hx

(
(Ix − Iz)Π(ν, k2)− IxHzK(k2)

)
,

where k2 is given by (16) and

Hx = 2EIx/l
2 − 1 Hz = 1− 2EIz/l

2 ν = −Iz(Ix − Iy)
Ix(Iy − Iz)

.

4. Impulsive Shape Changes

When the shape change is instantaneous the equations of motion (11) simplify to

(25) L̇ = I−1A×L.

Bb

Bl Br

(a) LU fast-kick
L+ = Rx(−X )L−

Bb

Bl Br

(b) UL fast-kick
L+ = Rx(X )L−

Bb

Bl

Br

(c) LH fast-kick
L+ = Rx(−Y)L−

Bb

Bl

Br

(d) HU fast-kick
L+ = Rx(X )L−

Bb

Bl

Br

(e) UH fast-kick
L+ = Rx(−X )L−

Bb

Bl

Br

(f) HL fast-kick
L+ = Rx(Y)L−

Figure 5. The tilt generated from different impulsive shape changes, where
the computation details are specified in [17].
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UU DU UU

LU
−→

HU
−→

Figure 6. Simplest 5-stage dive mechanic for executing twisting somersaults.

This is because L remains at constant length while A diverges as it is proportional to
the shape change velocities. When the shape change becomes impulsive we have Ω =
I−1(L−A)→ −I−1A resulting in (25), and expressing the components using (6) and (7)
gives

(26) L̇ = I−1xx (Alα̇l +Arα̇r)ML

where M is a constant matrix. This is a time-dependent linear differential equation with
solution

L+ = exp (ΘM)L− = Rx(Θ)L− ,(27)

where L− and L+ are the instantaneous angular momenta before and after the shape
change, and the angle

(28) Θ = lim
τ→0+

∫ τ

0
I−1xx (Alα̇l +Arα̇r) dt

is the tilt generated from the impulsive shape change. We appropriately parameterise the
shape angles αl and αr to evaluate (28), and for the impulsive shape changes shown in
Figure 5 the numerical values are X ≈ 0.147 and Y ≈ 0.330.

Stage Energy Ei Somersault rate Time spent τi
Shape Period Ti Twist rate Orbit Li(t)

1 0.0243l2 0.04852l (64.7452m− 19.4154n)/l
UU ∞ 0 (0, l, 0)t

3 0.0452l2 0.05548l 33.9610n/l
DU 33.9610/l 0.18501l RpL(t;E3, Jt, T3/4)

5 0.0243l2 0.04852l (64.7452m− 19.4154n)/l
UU ∞ 0 (0, l, 0)t

Total time T5 = (129.4905m− 4.8699n)/l

Table 1. The simple twisting somersault consisting of m somersaults and
n twists that follows the 5-stage dive mechanic given by Figure 6.
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(a) L-sphere.

-Π -3Π�4 -Π�2 -Π�4 Π�4 Π�2 3Π�4 Π

-Π�8

-Π�4

-3Π�8

-Π�2

Π�8

Π�4

(b) Mercator projection.

Figure 7. The point shown on the Ly-axis is the steady rotation corre-
sponding to pure somersaulting motion. The black solid loop shows the
orbit L3(t) and the blue dashed loop represents the family of initial condi-
tions L5(0; τ3).

Combining rigid body orbit (14) with (27) for impulsive shape changes we can now
formulate twisting somersaults. Following the construction of [6] the simplest twisting
somersault dive mechanic is shown in Figure 6, where the athlete takes off and finishes the

0 T3/4 3T3/4T3/2 T3
τ3

0.02 l2

0.04 l2

0.06 l2

0.08 l2

0.10 l2
E5(τ3)

Figure 8. The energy of stage 5 that results from the impulsive HU shape
change expressed as a function of time spent in stage 3. The blue region
denotes E5 < l2/(2Is,y), which results in wobbling somersaulting motion.
The period of wobble becomes infinite when τ3 = 0 mod T3, and this yields
the familiar pure somersaulting motion of the athlete.
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UU DU UD DU UU

LU
−→

HL
−→

LH
−→

HU
−→

Figure 9. 9-stage dive that enables athletes to execute more twists.

dive in pure somersaulting motion while using LU to initiate and HU fast-kick to terminate
twisting motion mid-flight. In the initial and final stages of the dive the orbit is

(29) L1(t) = L5(t) = l = (0, l, 0)t,

which corresponds to an equilibrium point on the L-sphere, while in stage 3 the orbit is
given by (21) and is illustrated in Figure 4. The technical details of the dive consisting of
m somersaults and n twists are given in [6], with the dive summary provided in Table 1. In
the table we set τ1 = τ5 and use the m somersault constraint in (22) to determine the total

(a) L-sphere.

-Π -3Π�4 -Π�2 -Π�4 Π�4 Π�2 3Π�4 Π

-Π�8

-Π�4

-3Π�8

-Π�2

Π�8

Π�4

(b) Mercator projection.

Figure 10. The LU fast-kick takes the orbit from the equilibrium point
to the upper loop, and the HL fast-kick brings the orbit to the lower loop
corresponding to a faster twisting somersaulting state. The LH and HU
fast-kicks are then used to reverse this procedure so that the orbit returns
to the equilibrium point, which corresponds to the athlete completing the
dive in pure somersaulting motion.
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time τ1 + τ5 spent in pure somersaulting motion. The entries in Table 1 called “Somersault
rate” and “Twist rate” give the amount the somersault and twist angle increases per second,
respectively.

Now we are going to develop ideas that will lead towards the new 513XD dive. An
interesting point to note is that when the HU fast-kick in stage 4 is performed at a different
time it has a different effect. Preforming the kick at time τ3 leads to a point we denote
by L5(0; τ3), which will then be taken as the initial point of stage 5 in the 9-stage dive.
The curve L5(0; τ3) is shown as a dashed curve in Figure 7. From this figure it is already
clear that if we perform the kick near the point opposite to the initial point L1 it has
the opposite effect: instead of decreasing Lz it increases Lz. A larger Lz implies a faster
twisting motion, and hence the idea is born to try to make this rotation as fast as possible.
To determine the fastest possible twisting we plot the energy E5(τ3) of stage 5 expressed
as a function of time τ3 when the kick is performed in stage 3, see Figure 8. The maximum
possible energy is E5(T3/2) = 0.0885l2. This minimises the period of twist and allows the
athlete to perform additional twists. To further improve the faster twisting somersault
rate we can replace the HU fast-kick with HL, which uses shape change from both arms to
essentially double the effect. Figure 9 presents a 9-stage dive sequence that takes advantage
of this result, and the orbit of the faster twisting somersault is shown in Figure 10. In order
to use (22) to compute the total somersault amount given n twists, we combine the nine
stages to obtain

(30) ∆φkick =

9∑
i=1
i odd

2Eiτi
l
− S(E3/l

2, Jt)− (n− 1)S(E5/l
2, Jt),

where the solid angle S is computed using (24), energy Ei with (12) and τi by (17) for the
twisting somersaulting motions. We can then set ∆φkick = 2πm for m somersaults and
solve for the total pure somersaulting time τ1 + τ9, and provide the 9-stage dive summary
in Table 2.

Comparison of Table 1 with Table 2 shows that for n > 1 twists the diver completes
the twists significantly faster with the 9-stage dive mechanic, resulting in more time spent
in pure somersaulting motion to complete the desired m somersaults. For the total times
of the 5-stage and the 9-stage dive we have T5 < T9 when n > 1. For both dives it
appears counterintuitive that performing more twists will take less time. This is related
to the fact that our somersault is performed in layout position and hence Jt,y < Is,y.
Using a more complicated model allowing the athlete to enter pike or tuck position for the
pure somersault would reverse the inequality between the moments of inertia, and hence
lead to dives which take longer when increasing n. We also observe in Table 2 that the
somersaulting rate of stage 5 is only slightly slower than stage 3 (and stage 7), while the
twisting rate nearly triples as a result of Jt,x ≈ Jt,y � Jt,z.

For given m and n the time for each stage as listed in tables 1 and 2 must be positive,
otherwise the dive with the given m and n is impossible, even in the kick model. For the
5-stage dive (table 1) the maximal n for m = 1.5 is 5, while for the 9-stage dive (table 2)
the maximal n for m = 1.5 is 12. These numbers for n are unrealistically high, which is a
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result of the kick-approximation. In reality the shape change takes a considerable amount
of time, and in the next section we use our theory together with numerical integration to
show that 5 twists are possible in a 9-stage dive with realistic shape changing times.

5. The 513XD Dive

We now present the 513XD dive consisting of 1.5 somersaults and 5 twists with realistic
shape changes building on the mechanism described in the previously section. The dive
mechanics are given in Figure 9 as before, but we will now resort to numerics when solving
the equations of motion (11) during shape change. For the 513XD dive simulation we
choose l = 100, τi even = 1/4 and use a cubic spline for the shape angles to ensure the
velocities are continuous throughout the dive. A video of the simulation of the 513XD dive
is available in an online supplement at ...

The diver takes off with L1(t) as before, and the trajectory L2(t) is obtained by solving
(11) numerically. We establish the rigid body orbit L3(t) with (14), which differs from
(21) because L2(τ2) determines the energy and phase shift instead of Rx(−X )L1(τ1) as
previously. The trajectory L4(t) is obtained by solving (11) numerically with initial con-
dition L3(τ3), meaning the end point L4(τ4) can be used to compute the next stage’s
energy with different timing τ3 (see Figure 11a where we treat E5 as a function of τ3).
The ideal τ3 gives rise to the maximum energy E5 corresponding to the minimum period
of twist, hence producing the optimal faster twisting somersault with orbit L5(t). To re-
vert to pure somersaulting motion we first find the timing τ5 (up to modT5) that satisfies
E7(τ5) = E3, meaning L6(t) leads to L7(t) = L3(t+ c7) for some phase shift c7 (see Figure
11b to uncover the desired timing τ5). We repeat this procedure to find the timing τ7

Stage Energy Ei Somersault rate Time spent τi
Shape Period Ti Twist rate Orbit Li(t)

1 0.0243l2 0.04852l (64.7452m− 6.5082n− 12.9073)/l
UU ∞ 0 (0, l, 0)t

3 0.0452l2 0.05548l 16.9805/l
DU 33.9610/l 0.18501l RpL(t;E3, Jt, T3/4)

5 0.1835l2 0.05547l 11.3854(n− 1)/l
UD 11.3854/l 0.55187l R−1p L(t;E5, Jt, 3T5/4)

7 0.0452l2 0.05548l 16.9805/l
DU 33.9610/l 0.18501l RpL(t;E3, Jt, 3T3/4)

9 0.0243l2 0.04852l (64.7452m− 6.5082n− 12.9073)/l
UU ∞ 0 (0, l, 0)t

Total time T9 = (129.4905m− 1.6310n− 3.2389)/l

Table 2. The innovative twisting somersault consisting of m somersaults
and n twists that follows the 9-stage dive mechanic given by Figure 9.
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that yields E9(τ7) = E1, hence returning the athlete to pure somersaulting motion where
L9(t) = L1(t) = (0, l, 0)t.

The trajectory L(t) shown in Figure 12 gives rise to the faster twisting somersault
consisting of 5 twists, and the 1.5 somersault constraint determines the total pure somer-
saulting time τ1+τ9. To find this, we apply Cabrera’s formula (23) to the individual stages
and sum up to obtain

(31) 1.5 · 2π = −A
l2

+
9∑
i=1

2Eiτi
l

where Ei is defined by

(32) Ei =
1

l

9∑
i=1

∫ τi

0
I−1i (t)

(
Li(t)−Ai(t)

)
·Li(t) dt,

and may be interpreted as an averaged energy during a shape changing phase. Since all
other quantities are known we can solve for τ1 +τ9. The surface area A is illustrated by the
blue shaded region in Figure 12b, which can be found by numerically computing multiple
line integrals appropriately partitioned on the L-sphere as shown in Figure 13. The sub-

areas are computed using the line integral Ai =

∮
Ci

F (x(s)) · ẋ(s) ds, where x = (x, y, z)t,

F (x) =
lz

x2 + y2
(
y,−x, 0

)t
and each loop Ci consists of a segment from the equator, one

0 T3�4 3T3�4T3�2 T3
Τ30

500

1000

1500

2000
E5HΤ3L

(a) Energy E5 as a function
of τ3, where the maximum is
E5 = 1801.23 occurring at τ3 =
0.0564T3.

 T5  T5�4  T5�2  3T5�4  T5
Τ50

1000

2000

3000

4000
E7HΤ5L

E3

(b) Energy E7 as a function
of τ5, where the minimum is
E7 = 460.012 occurring at τ5 =
0.7984T5.

Figure 11. The family of possible energies moving into and out of the
faster twisting somersaulting motion. The vertical dashed lines show the
timing of maximal and minimal energies, respectively.
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(a) 513XD dive on L-sphere.

L5HtL

-2Π-3Π-4Π-5Π-6Π-7Π-8Π-9Π-10Π -Π

-Π�8

-Π�4

-3Π�8

-Π�2

L6HtL L4HtL

L3HtLL2HtL

L1HtL

L7HtLL8HtL

(b) Mercator projection with the mod 2π removed. The black points partition the trajectory into the
nine different stages of the dive, and the blue shaded region gives the surface area A bounded by the
orbit L and equator.

Figure 12. The evolution of L(t) corresponding to the 513XD dive.

or two vertical arcs and Li(t). Performing the computation we find that the only non-

zero contribution comes from Li(t), hence Ai =

∫ τi

0
F
(
Li(t)

)
· L̇i(t) dt. Evaluating the

integrals yields the results shown in Figure 13, resulting in A =

8∑
i=2

Ai = 151392. We give

the 513XD dive summary in Table 3, and plot the components of L(t) and q(t) in Figure
14. We find that Lx is anti-symmetric, while Ly and Lz are symmetric about T513XD/2.
We solve the equations of orientation (37) given in Appendix C numerically and plot the
result in Figure 14b, which shows q0(t) = q2(T513XD− t) and q1(t) = −q3(T513XD− t). The
symmetry is a result of distributing τ1 and τ9 equally.
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(a) A2 = 2406.62. (b) A3 = 722.037. (c) A4 = 23770.8.

Figure 13. Due to symmetry A6 = A4, A7 = A3, and A8 = A2. The
sub-area A5 = 97593.3 can be determined from Fig. 10.

Table 3 can be considered the main summary of the new 513XD dive. The subscripts
denote the stage as usual. The table gives the energies Ei, which are averaged as defined
in (32) for the shape changing phases 2, 4, 6, 8. For the rigid phases 1, 3, 5, 7 the period of
twisting motion Ti are given as defined in (17), while for the shape changing phases they are

Stage Shape Ei Ti τi Ai/l
2 2Eiτi/l mi ni

1 UU 242.6 ∞ 0.220 0 1.07 0.17 0
2 LU 314.7 1.042 0.250 0.24 1.57 0.21 0.24
3 DU 460.0 0.333 0.019 0.07 0.17 0.02 0.06
4 HL 732.5 0.313 0.250 2.38 3.66 0.20 0.80
5 UD 1801.2 0.115 0.322 9.76 11.60 0.29 2.79
6 LH 732.5 0.313 0.250 2.38 3.66 0.20 0.80
7 DU 460.0 0.333 0.019 0.07 0.17 0.02 0.06
8 HU 314.7 1.042 0.250 0.24 1.57 0.21 0.24
9 UU 242.6 ∞ 0.220 0 1.07 0.17 0

sum: 0.180 15.14 24.56 1.50 5.00

Table 3. Summary of the 513XD dive with l = 100. Shown are the energies
Ei, periods Ti, and times τi per stage i. For the shape changing phases
2,4,6,8 they are given by appropriate averages. The next columns give
geometric phase and dynamics phase, and the two final columns give the
number of somersault and the number of twists. In the final row the total are
shown for time, geometric phase, dynamic phase, such that 24.56− 15.14 ≈
2π 1.5 gives the desired 1.5 somersaults, which is also given in themi column.
The final entry is the number of twists achieved.
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defined by dividing the time τi by the amount of twist ni. The next column gives the length
τi of stage i. The next column gives the geometric phase per stage. It should be mentioned
that technically speaking the geometric phase is only well defined for closed loops, and hence
not for individual stages. The areas Ai for the individual stages are not gauge invariant;
however, in our case a natural choice of gauge is to put the reference segment fixed in the
trunk of the model, and the numbers given for the individual stages are with respect to this
choice. The last three columns are quantities that are derived from the earlier quantities:
the dynamic phase given by 2Eiτi/l, the number of somersaults mi per stage (given by the
difference of dynamic phase and geometric phase divided by 2π), and the number of twists
ni per stage. It is interesting to compare the entries of the full dive to those of the kick
model as given in table 2. Clearly energy and period for the rigid phases are very similar,
which explains why the kick-model is a good approximation. Such agreement cannot hold

Lx
Ly
Lz

0.5 1.0 1.5
t

-100

-50

50

100
L

(a) The components of the angular momentum L(t).

q0
q1
q2
q3

0.5 1.0 1.5
t

-1.0

-0.5

0.5

1.0
q

(b) The orientation expressed as the quaternion q(t).

Figure 14. The components of L(t) and q(t) for the 513XD dive, where
q(t) is obtained by numerically solving (37) given in Appendix C. The ver-
tical dashed lines separate the different stages of the dive.
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for τi, since in the full model the shape changing times τ2 = τ4 = τ6 = τ8 = 0.25 must be
absorbed in order to keep the total time the same.

The airborne time T513XD = 1.8 is slightly longer than the typical 1.5-1.6 second flight
time from the 10m platform, but as the angular momentum l = 100 chosen is quite con-
servative we can lower T513XD with a larger l value. Furthermore, over 0.4 seconds is spent
in the layout position (Is,y ≈ 20) to achieve the desired somersault amount, which can be
significantly reduced if the model incorporates shape changes allowing the athlete to enter
pike (Iy ≈ 6) or tuck (Iy ≈ 4) positions. This leads us to conclude that real world athletes
can in principle execute the 513XD dive, and this would revolutionise the sport of diving
if successfully performed in competition.

6. From Pure Somersault to Pure Twist

The 513XD dive uses an extra pair of shape changes in addition to the 5-stage dive to
enter and exit the faster twisting somersaulting motion. For impulsive shape changes we
found that the optimal fast-kick timing is after a half twist, so there is no reason why this
procedure cannot be repeated to further speed up twist in the twisting somersault. We
now show how an athlete taking off in pure somersaulting motion (Figure 15a) can use a
sequence of impulsive shape changes to enter a state of pure twist (Figure 15b), assuming
a sufficiently large overall time. For the first time this question has been discussed in
Yeadon’s thesis [18].

The pure twisting motion corresponds to the steady rotation lt = (0, 0,−l)t with period

(33) Tt = 2πIs,z/l = 6.2553/l.

(a) Pure somersaulting state. (b) Pure twisting state.

Figure 15. The pure somersaulting and pure twisting states.
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Ly

Lx

L7(t)

L9(0; τ7)

LR

Figure 16. The blue outer orbit corresponds to L7(t), the red inner orbit
represents LR(t) and the red dashed orbit L9(0; τ7) is the family of possible
initial conditions generated by HL fast-kick from L7(τ7). The black vertical
lines show the impulsive shape change transition from L7(t) to LR(t) orbit
and from LR(t) to lt.

The twists are in the counterclockwise direction and the energy

(34) Et = l2I−1s,y /2 = 0.5022l2
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Figure 17. L-sphere projection onto the xy-plane for the pure somersault
to pure twist dive.
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is maximal for the UU shape.
The athlete begins by performing fast-kicks after half twist intervals to speed up the

twisting motion, but beyond a certain point (after stage 7 with L7(t)) no further improve-
ment is made and the athlete needs to adopt a new strategy. Suppose LR(t) corresponds
to the rigid body orbit with shape UH that contains the point LR = Rx(X )lt, then we
know a UH fast-kick at this point will lead to pure twisting motion. Similarly, let LL(t)
correspond to the symmetric case with point LL = Rx(−X )lt. Our goal is now to find (if
possible) either a HL or LH fast-kick timing that brings the athlete into LR(t) or LL(t)
orbit, respectively. We show in Figure 16 that there are two points of intersection between
L9(0; τ7) and LR(t), where the earlier timing occurs at τ7 = 3.4946/l. The athlete then
remains on the LR(t) orbit for τ9 = 4.0735/l to reach the designated point LR before exe-
cuting the UH fast-kick to enter a state of pure twist. The complete transition from pure
somersault to pure twist is given in Table 4. Although the realistic analogue of this cannot
be performed in platform diving, it nevertheless has interesting applications. For example,
it may be possible to achieve momentary pure twist in sports that have larger airborne
times, such as high diving and aerial skiing. Also, the conversion from pure somersault to
pure twist (and vice-versa) has applications in space manoeuvrability where airborne time
is not a factor.

Stage Energy Ei Time spent τi Initial condition Li(0)
Shape Period Ti Twist rate Orbit Li(t)

1 0.0243l2 − l
UU ∞ 0 (0, l, 0)t

3 0.0452l2 T3/2 Rx(−X )l
DU 33.9610/l 0.18501l RpL(t;E3, Jt, T3/4)

5 0.1835l2 T5/2 −Rx(X + Y + 2p)l
UD 11.3854/l 0.55187l R−1p L(t;E5, Jt, 3T5/4)

7 0.3786l2 3.4946/l Rx(−X − 2Y − 4p)l
DU 7.5855/l 0.8283l RpL(t;E7, Jt, T7/4)

9 0.4996l2 4.0735/l (−0.130,−0.174,−0.976)t

UD 6.5410/l 0.9606l R−1p L(t;E9, Jt, 4.1028)

11 Et = 0.5022l2 − lt
UU Tt = 6.2553/l 1.0045l (0, 0,−l)t

Table 4. Sequence of impulsive shape changes to transition from a state
of pure somersault (stage 1) to a state of pure twist (stage 11).
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Appendix A. Model Parameters

segment partitions mass (kg) geometry (cm)

Bb

head 5.575 sphere: r = 11
torso 32.400 cuboid: 18× 30× 60
left thigh 8.650 cylinder: r = 8 h = 43
right thigh 8.650 cylinder: r = 8 h = 43
left lower leg 4.086 cylinder: r = 5.5 h = 43
right lower leg 4.086 cylinder: r = 5.5 h = 43
left foot 1.436 sphere: r = 7
right foot 1.436 sphere: r = 7
left upper arm 2.356 cylinder: r = 5 h = 30

Bl left forearm 1.781 cylinder: r = 4.5 h = 28
left hand 0.523 sphere: r = 5
right upper arm 2.356 cylinder: r = 5 h = 30

Br right forearm 1.781 cylinder: r = 4.5 h = 28
right hand 0.523 sphere: r = 5

Table 5. Frohlich’s twelve segment model of a male athlete that is 1.82 m
in height and weighs 75.639 kg.

We combine multiple body parts of Table 5 to produce the three segments denoted by
Bi for i ∈ {b, l, r}, which represent the body, left arm and right arm, respectively. The
numerical values of the mass and tensor of inertia of segments in our model are

mb = 66.319 Ĩb = diag (14.204, 13.867, 0.612)

ml = mr = 4.660 Ĩl = Ĩr = diag (0.176, 0.176, 0.005).

The collection of {J̃ ji} that specify the geometry of our model are

J̃
l
b = (0, 0.2, 0.5196)t J̃

r
b = (0,−0.2, 0.5196)t J̃

b
l = J̃

b
r = (0, 0, 0.3647)t.

In the layout position the athlete has shape (αl, αr) = (π, π) and the tensor of inertia is

Is = diag(21.3188, 20.6091, 0.9956).

In the twist position the shape is either (αl, αr) = (0, π) or (αl, αr) = (π, 0), which produces
the same diagonalised tensor of inertia

Jt = diag(18.3745, 17.6925, 0.9679).
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Appendix B. Components of I and A

Evaluating (4) with the abduction-adduction plane of motion restriction simplifies the

tensor of inertia I to the form I =

 Ixx 0 0
0 Iyy Iyz
0 Iyz Izz

. Explicitly, the components are

Ixx = a0 − 2a1 cos+(αl, αr) + 2a2 sin+(αl, αr)− 2a3 cos (αl + αr)

Iyy = a5 − 2a1 cos+(αl, αr) + a4 cos+(2αl, 2αr)− 2a3 cosαl cosαr

Izz = a6 + 2a2 sin+(αl, αr)− a4 cos+(2αl, 2αr) + 2a3 sinαl sinαr

Iyz = a2 cos−(αl, αr)− a1 sin−(αl, αr) + a4 sin−(2αl, 2αr)− a3 sin (αl − αr),
where

cos+(αl, αr) = cosαl + cosαr sin+(αl, αr) = sinαl + sinαr

cos−(αl, αr) = cosαl − cosαr sin−(αl, αr) = sinαl − sinαr.

Similarly, (5) simplifies to A =
(
Alα̇l +Arα̇r, 0, 0

)t
where

Al = a7 − a1 cosαl + a2 sinαl − a3 cos (αl + αr)

Ar = −a7 + a1 cosαr − a2 sinαr + a3 cos (αl + αr).

The constants a0, a1, . . . , a7 are determined by the collection of
{
mi, Ĩi, J̃

j
i

}
and are

a0 = 18.298 a1 = 0.774 a2 = 0.340 a3 = 0.038

a4 = 0.376 a5 = 16.836 a6 = 1.748 a7 = 0.758.

Appendix C. Equations of Orientation

The orientation can be tracked from the solution of the equations of motion (11). We
will represent the orientation with unit quaternions as they provide an elegant form of
encoding the angle-vector information. Consider a clockwise rotation of θ about the unit
vector u, which can be presented with the unit quaternion q = q0+q = cos(θ/2)+u sin θ/2,
where the vector q = q1i + q2j + q3k specifies the imaginary parts. To rotate an arbitrary
vector v by the quaternion q, we first treat the vector as a pure quaternion expressed as
v = 0 + v and then apply the transformation p = qvq̄, where q̄ = q0 − q is the quaternion
conjugate. The result is a pure quaternion p = 0 + 2(v · q)q + (q20 − q · q)v − 2q0v × q,
which is linear in v and can therefore be rearranged to obtain the vector

(35) p =
[
2(qqt + q0q) + (q20 − q · q)1

]
v.

Now the coefficient of v is precisely the rotation matrix R, so substituting it in Ω̂ = RtṘ
and removing the hat operator gives

(36) Ω = 2

 −q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0




q̇0
q̇1
q̇2
q̇3

 ,
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where Ω is a known vector obtained from solving the equations of motion (11). As q is a
unit quaternion we can incorporate the constraint q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 = 0 with (36)
to derive the equations of orientation

(37) q̇ =
1

2

(
0 −Ωt

Ω −Ω̂

)
q.

Together with (11) and (37), a complete description of the dynamics for a system of coupled
rigid bodies can be given.
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