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Twisting Somersault∗
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Abstract. We give a dynamical system analysis of the twisting somersaults using a reduction to a time-
dependent Euler equation for nonrigid body dynamics. The central idea is that after reduction
the twisting motion is apparent in a body frame, while the somersaulting (rotation about the fixed
angular momentum vector in space) is recovered by a combination of dynamic phase and geometric
phase. In the simplest “kick-model” the number of somersaults m and the number of twists n are
obtained through a rational rotation number W = m/n of a (rigid) Euler top. Using the full model
with shape changes that take a realistic time we then derive the master twisting-somersault formula:
an exact formula that relates the airborne time of the diver, the time spent in various stages of the
dive, the numbers m and n, the energy in the stages, and the angular momentum by extending a
geometric phase formula due to Cabrera [J. Geom. Phys., 57 (2007), pp. 1405–1420]. Numerical
simulations for various dives agree perfectly with this formula where realistic parameters are taken
from actual observations.
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1. Introduction. One of the most beautiful Olympic sports is springboard and platform
diving, where a typical dive consists of a number of somersaults and twists performed in
a variety of forms. The athlete generates angular momentum at take-off and achieves the
desired dive by executing shape changes while airborne. From a mathematical point of view
the simpler class of dives are those for which the rotation axis and hence the direction of
angular velocity remain constant and only the values of the principal moments of inertia
are changed by the shape change, but not the principal axis. This is typical in dives with
somersaults in a tight tuck position with minimal moments of inertia. The mathematically
much more interesting dives include a shape change that moves the principal axis and hence
generates a motion in which the rotation axis is not constant. This is typical in twisting
somersaults, the object of this paper. We are using modern tools from dynamical systems,
in particular from geometric mechanics, to understand this situation. Our findings apply to
coupled rigid body dynamics in general, e.g., in other sports like aerial skiing, or to spacecraft
attitude control.

The first correct description of the physics of the twisting somersault was given by Frohlich
[5]. Frohlich writes with regards to some publication from the 60s and 70s that “several books
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TWISTING SOMERSAULT 1807

written by or for coaches discuss somersaulting and twisting, and exhibit varying degrees of
insight and/or confusion about the physics processes that occur.” A full fledged analysis has
been developed by Yeadon in a series of classical papers [17, 18, 19, 20]. Frohlich was the
first to point out the importance of shape change for generating rotations even in the absence
of angular momentum. Our analysis reveals how exactly a shape change generates a change
in rotation in the presence of angular momentum. From a modern point of view this is a
question raised in the seminal papers by Shapere and Wilczek [13, 14]: “What is the most
efficient way for a body to change its orientation?” Our answer involves the generalization
of geometric phase in rigid body dynamics [10] to shape-changing bodies recently obtained in
[3].

To be able to apply these ideas in our context we first derive a version of the Euler
equation for a shape-changing body. Such equations have been obtained in principle in,
e.g., [11, 6, 7, 4]. Our form of the equations is particularly simple, and we derive the explicit
form of the important time-dependent terms for a system of coupled rigid bodies. By writing
the equations in a particular frame we find beauty and simplicity in the equations of motion
(see Theorems 1 and 2). We then take a simple particular system of just two coupled rigid
bodies (the “one-armed diver”) and show how a twisting somersault can be achieved with
this model. An even simpler model is the diver with a rotor analyzed in [2], in which all the
stages of the dive can be analytically solved for. In the present paper we use an analytically
solvable approximation in which the shape change is instantaneous. In this kick-model the
dynamics is described by a piecewise smooth dynamical system and we use an extension of
Montgomery’s geometric phase formula [10] for the reconstruction; see Theorem 6. A similar
extension for a different rotation angle was first obtained by Bates, Cushman, and Savev [1].

Throughout the paper we emphasize the geometric mechanics point of view. Hence the
translational and rotational symmetry of the problem is reduced, and thus Euler-type equa-
tions are found in a co-moving frame. In this reduced description the amount of somersault
(i.e., the amount of rotation about the fixed angular momentum vector in space) is not present.
Reconstruction allows us to recover this angle by solving an additional differential equation
driven by the solution of the reduced equations. It turns out that for a closed loop in shape
space the somersault angle can be recovered by a geometric phase formula due to [3]; see
Theorem 9.

The structure of the paper is as follows. In section 2 we derive the equations of motion for
a system of coupled rigid bodies that is changing shape. The resulting Euler-type equations
are the basis for the following analysis. In section 3 we discuss a simplified kick-model, in
which the shape change is impulsive. The kick changes the trajectory and the energy, but
not the total angular momentum. In section 4 the full model is analyzed, without the kick
assumption. Unlike the previous section, here we have to resort to numerics to compute some
of the terms. But we show that using the generalized geometric phase formula due to Cabrera
[3] gives an exact description and a beautiful geometric interpretation of the mechanics behind
the twisting somersault.

2. Euler equations for coupled rigid bodies. Let l be the constant angular momentum
vector in a space fixed frame. Rigid body dynamics usually use a body-frame because in that
frame the tensor of inertia is constant. The change from one coordinate system to the other isD
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1808 HOLGER R. DULLIN AND WILLIAM TONG

given by a rotation matrix R = R(t) ∈ SO(3) such that l = RL. In the body frame the vector
L is described as a moving vector and only its length remains constant since R ∈ SO(3). The
angular velocity Ω in the body frame is the vector such that Ω × v = RtṘv for any vector
v ∈ R3. Even though for a system of coupled rigid bodies the tensor of inertia is generally
not a constant, a body frame still gives the simplest equations of motion.

Theorem 1. The equations of motion for a shape-changing body with angular momentum
vector L ∈ R3 in a body frame are

(1) L̇ = L×Ω,

where the angular velocity Ω ∈ R3 is given by

(2) Ω = I−1(L−A),

I = I(t) is the tensor of inertia, and A = A(t) is a “momentum shift” (or “shape momen-
tum”) generated by the shape change.

Proof. The basic assumption is that the shape change is such that the angular momentum
is constant. Let l be the vector of angular momentum in the space fixed frame; then l = RL.
Taking the time derivative gives 0 = ṘL + RL̇ and hence L̇ = −RtṘL = −Ω × L = L ×Ω.
The interesting dynamics is all hidden in the relation between Ω and L.

Let q = RQ, where Q is the position of a point in the body B in the body frame, and q is
the corresponding point in the space fixed frame. The relation between L and Ω is obtained
from the definition of angular momentum which is q × q̇ integrated over the body B. The
relation q = RQ is for a rigid body; for a deforming body we label each point by Q in the
body frame but allow for an additional shape change S, so that q = RSQ. We assume that
S : R3 → R3 is volume preserving, which means that the determinant of the Jacobian matrix
of S is 1. The deformation S need not be linear, but we assume that we are in a frame in
which the center of mass is fixed at the origin, so that S fixes that point. Now

q̇ = ṘSQ +RṠQ +RSQ̇ = RRtṘSQ +RṠQ = R(Ω× SQ) +RṠS−1SQ

= R(Ω× Q̃ + ṠS−1Q̃),
(3)

where Q̃ = SQ. Thus we have

q× q̇ = RQ̃×R(Ω× Q̃ + ṠS−1Q̃)

= R(|Q̃|21− Q̃Q̃t)Ω +R(Q̃× ṠS−1Q̃) .
(4)

Now l is defined by integrating over the deformed body B̃ with density ρ = ρ(Q̃), so that
l =

∫
ρq× q̇ dQ̃ and using l = RL gives

(5) L =

∫
B̃
ρ(|Q̃|21− Q̃Q̃t) dQ̃ Ω +

∫
B̃
ρQ̃× ṠS−1Q̃ dQ̃.

The first term is the tensor of inertia I of the shape changed body, and the constant term
defines the shape momentum A so that

(6) L = IΩ + A,

as claimed.D
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TWISTING SOMERSAULT 1809

Remark 1.1. Explicit formulas for I and A in the case of a system of coupled rigid bodies
are given in the next theorem. When I is constant and A = 0 the equations reduce to the
classical Euler equations for a rigid body.

Remark 1.2. For arbitrary time dependence of I and A the total angular momentum |L|
is conserved; in fact, it is a Casimir of the Poisson structure {f, g} = ∇f · L×∇g.

Remark 1.3. The equations are Hamiltonian with respect to this Poisson structure with
Hamiltonian H = 1

2(L−A)I−1(L−A) such that Ω = ∂H/∂L.

For a system of coupled rigid bodies the shape change S is given by rotations of the
individual segments relative to some reference segment, typically the trunk. The orientation
of the reference segment is given by the rotation matrix R so that l = RL. The system of
rigid bodies is described by a tree that describes the connectivity of the bodies; see the thesis
of Tong [15] for the details.

Denote by C the overall center of mass, and by Ci the position of the center of mass of
body Bi relative to C. Each body’s mass is denoted by mi, and its orientation by Rαi , where
αi denotes the set of angles necessary to describe its relative orientation (e.g., a single angle for
a pin joint, or three angles for a ball and socket joint). All orientations are measured relative
to the reference segment, so that the orientation of Bi in the space fixed frame is given by
RRαi . The angular velocity Ωαi is the relative angular velocity corresponding to Rαi , so that
the angular velocity of Bi in the space fixed frame is Rtαi

Ω + Ωαi . Finally, Ii is the tensor of
inertia of Bi in a local frame with center at Ci and coordinate axes aligned with the principle
axes of inertia. With this notation we have the following.

Theorem 2. For a system of coupled rigid bodies we have

(7) I =
∑

RαiIiR
t
αi

+mi(|Ci|21−CiC
t
i)

and

(8) A =
∑

(miCi × Ċi +RαiIiΩαi),

where mi is the mass, Ci the position of the center of mass, Rαi the relative orientation, Ωαi

the relative angular velocity such that Rtαi
Ṙαiv = Ωαiv for all v ∈ R3, and Ii the tensor of

inertia of body Bi. The sum is over all bodies Bi including the reference segment, for which
the rotation is simply given by 1.

Proof. The basic transformation law for body Bi in the tree of coupled rigid bodies is
qi = RRαi(Ci+Qi). Repeating the calculation in the proof of Theorem 1 with this particular
S and summing over the bodies gives the result. We will skip the derivation of Ci in terms
of the shape change and the geometry of the model and refer the reader to [15] for the de-
tails.

Remark 2.1. In the formula for I the first term is the moment of inertia of the segment
transformed to the frame of the reference segment, while the second term comes from the
parallel axis theorem (see, e.g., [8]), applied to the center of mass of the segment relative to
the overall center of mass.D
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1810 HOLGER R. DULLIN AND WILLIAM TONG

Remark 2.2. In the formula for A the first term is the internal angular momentum gen-
erated by the change of the relative center of mass, while the second term originates from the
relative angular velocity.

Remark 2.3. When there is no shape change, then Ċi = 0 and Ωi = 0, and hence A = 0.

Remark 2.4. The vectors Ci, Ċi, and Ωαi are determined by the set of time-dependent
matrices {Rαi} (the time-dependent “shape”) and the joint positions of the coupled rigid
bodies (the time-independent “geometry” of the model); see [15] for the details. In particular,
also

∑
miCi = 0.

In order to describe and numerically compute the rotation matrix R that determines the
position of the body in space, we use quaternions. This is convenient because unlike Euler
angles the description in quaternions is free of singularities. Specifically, we write Rx = qxq̄,
where the quaternion q is q = q0 + q1i + q2j + q3k and the vector x on the left-hand side and
the pure quaternion x = x1i+x2j+x3k on the right-hand side; see, e.g., [15] for more details.

3. A simple model for twisting somersault. Instead of the full complexity of a realistic
coupled rigid body model for the human body, e.g., with 11 segments [16] or more, here we are
going to show that even when all but one arm is kept fixed it is still possible to do a twisting
somersault. The formulas we derive are completely general, so that more complicated shape
changes can be studied in the same framework. But in order to explain the essential ingredients
of the twisting somersault we choose to discuss a simple example. A typical dive consists of
a number of phases or stages in which the body shape is either fixed or not. Again, it is not
necessary to make this distinction; the equations of motion are general, and one could study
dives where the shape is changing throughout. However, the assumption of rigid body motions
for certain times is satisfied to a good approximation in reality and makes the analysis simpler
and more explicit. The stages where shape change occurs are relatively short, and considerable
time is spent in rotation with a fixed shape. This observation motivates our first approximate
model, in which the shape changes are assumed to be impulsive. Hence we have instantaneous
transitions between solution curves of rigid bodies with different tensors of inertia and different
energy, but the same angular momentum. A simple twisting somersault hence looks like this:
The motion starts out as a steady rotation about a principal axis resulting in pure somersault
(stage 1), and typically this is about the axis of the middle principle moment of inertia which
has unstable equilibrium. After some time a shape change occurs; in our case one arm goes
down (stage 2). This makes the body asymmetric and generates some tilt between the new
principal axis and the constant angular momentum vector. As a result the body starts twisting
with constant shape (stage 3) until another shape change (stage 4) stops the twist, for which
the body then resumes pure somersaulting motion (stage 5) until head first entry in the water.
The amount of time spent in each of the five stages is denoted by τi, where i = 1, . . . , 5. We
also use the subscripts s for the somersaulting stages 1 and 5, and the subscript t for the
twisting phase 3.

The energy for pure somersault in stages 1 and 5 is Es = 1
2LsI

−1
s Ls = 1

2 l
2Is,yy. In the kick-

model, stages 2 and 4 do not take up any time, so τ2 = τ4 = 0, but they do change the energy
and the tensor of inertia. On the momentum sphere |L|2 = l2 the dive thus appears like this;
see Figure 1: For some time the trajectory of L on the L-sphere remains at the equilibriumD
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TWISTING SOMERSAULT 1811

Figure 1. Twisting somersault on the sphere |L| = l where the shape change is a kick. The region A
bounded by the stage 3 orbit of L and the equator (dashed) is shaded in dark blue.

point Lx = Lz = 0; then it is kicked into a periodic orbit with larger energy describing the
twisting motion. Depending on the total available time a number of full (or half) revolutions
are done on this orbit, until another kick brings the solution back to the unstable equilibrium
point where it started (or on the opposite end with negative Ly). Finally, some time is spent
in the pure somersaulting motion before the athlete completes the dive with head first entry
into the water.

The description in the body frame on the sphere |L|2 = l2 does not directly contain the
somersault rotation about l in physical space. This is measured by the angle of rotation
φ about the fixed angular momentum vector l in space, which is the angle reduced by the
symmetry reduction that lead to the description in the body frame, and the angle φ will have
to be recovered from its dynamic phase and geometric phase. What is visible on the L-sphere
is the dynamics of the twisting motion, which is the rotation about the (approximately) head-
to-toe body axis. When the shape is constant all motions on the L-sphere except for the
separatrices are periodic, but they are not periodic in physical space because φ in general has
a different period. This is the typical situation in a system after symmetry reduction.

To build a successful dive, a half-integer number of somersaults is required with either a
half-integer or integer number of twists. This is achieved by initiating and terminating the
orbit on the L-sphere at one of the equilibrium points (0,±l, 0). Connecting different equilib-
rium points corresponds to half-integer twists, while connecting the same equilibrium points
corresponds to an integer number of twists. Starting and finishing at these equilibrium points
also guarantees that the athlete’s take-off and entry into the water is in pure somersaulting
motion. As the take-off is performed in the upright position with head-first entry, the change
in φ, i.e., the amount of rotation about the axis l, has to be a half-integer. So, if necessary,D
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1812 HOLGER R. DULLIN AND WILLIAM TONG

(a) t = 0 (b) t = 1/32 (c) t = 1/16

(d) t = 3/32 (e) t = 1/8 (f) t = 5/32

(g) t = 3/16 (h) t = 7/32 (i) t = 1/4

Figure 2. The arm motion for the twisting somersault. At t = 0 the space fixed frame and the body fixed
frame are aligned. See the supplementary material (M105509 01.mp4 [local/web 596KB]) for a movie of the
corresponding twisting somersault.

the angle φ will evolve (without generating additional twist) in the pure somersaulting stages
1 and 5 to meet this criterion.

The orbit for the twisting stage 3 is obtained as the intersection of the angular momentum
sphere |L|2 = l2 and the Hamiltonian H = 1

2LI−1t L = Et, where It denotes the tensor of inertia
for the twisting stage 3 which in general is nondiagonal (the subscript t stands for “twist”).
The period of this motion depends on Et and can be computed in terms of complete elliptic
integrals of the first kind; see below.

Before we proceed with a more detailed analysis of the kick-model we present the numer-
ical solution for a realistic model in which the shape change of Figure 2 takes 0.25 seconds.
The solution consists of the five stages described above, and it is presented in two ways: In
Figure 3 time series of the components of the vector L and the components of the quaternion
q describing the rotation matrix R are shown. An animation of this dive can be found inD
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Lx
Ly

Lz

0.23 0.48 1.31 1.56 1.79
t

-100

-50

50

100
L

(a) L for all stages.

q0
q1
q2
q3

0.23 0.48 1.31 1.56 1.79
t

-1.0

-0.5

0.5

1.0
q

(b) q for all stages.

Figure 3. Twisting somersault with m = 1.5 somersaults and n = 3 twists. The left pane shows the angular
momentum L(t), and the right pane shows the quaternion q(t) that determines the orientation R. The stages
are separated by the vertical thin lines, τ1 = τ5 = 0.23, τ2 = τ4 = 1/4, τ3 = 0.83. The same trajectory on the
L-sphere is shown in Figure 4.

Figure 4. Twisting somersault with m = 1.5 somersault and n = 3 twists on the sphere |L| = l. The orbit
starts and finishes on the Ly-axis with stages 1 and 5. Shape-changing stages 2 and 4 are the curved orbit
segments that start and finish at this point. The twisting somersault stage 3 appears as a slightly deformed
circle below the equator (dashed).

the supplementary material (M105509 01.mp4 [local/web 596KB]). In Figure 4 the trajectory
L(t) is shown as a curve on the sphere |L| = l = const. Comparison of Figures 4 and 1 shows
that qualitatively the kick-model agrees well with the full model. One of the main themes ofD
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1814 HOLGER R. DULLIN AND WILLIAM TONG

the following analysis is to extract the essential information about the orientation matrix R
contained in the right pane of Figure 3 from some properties of Figure 4, and the theoretical
tool to do so will be the geometric phase; see below. But before we resolve this problem we
now analyze the kick-model in more detail.

Lemma 3. In the kick-model the instantaneous shape change of the arm from up (α = π)
to down (α = 0) rotates the angular momentum vector in the body frame from Ls = (0, l, 0)t

to Lt = Rx(−χ)Ls, where Rx(−χ) is a rotation about the x-axis by −χ and the tilt angle χ is

(9) χ =

∫ π

0
I−1t,xx(α)Ax(α)dα.

Here I−1t,xx(α) is the xx component of the (changing) inverse moment of inertia tensor I−1t ,
and the shape momentum is A = (Ax(α)α̇, 0, 0)t. In particular the energy after the kick is
Et = 1

2LsRx(χ)ItRx(−χ)Ls.

Proof. Denote by α the angle of the arm relative to the trunk, where α = 0 is arm down
and α = π is arm up. Let the shape change be determined by α(t), where α(0) = π and
α(τ2) = 0. Now A is proportional to α̇ and hence A diverges when the duration of the kick τ2
goes to zero. This means in the limit τ2 → 0 we have |A| → ∞ while L has constant length.
So we replace Ω = I−1(L − A) by the approximation Ω ≈ −I−1A. Thus the equations of
motion during an infinitesimal kick become

(10) L̇ = I−1A× L.

Notice that these approximate equations are linear in L. Denote the moving arm as the body
B2 with index 2, and the trunk and all the other fixed segments as a combined body with
index 1. Since the arm is moved in the yz-plane, we have Rα2 = Rx(α(t)) and Ωα2 parallel
to the x-axis. Moreover, the overall center of mass will be in the yz-plane, so that Ci and
Ċi, i = 1, 2, are also in the yz-plane. So we have Ci × Ċi parallel to the x-axis as well, and
hence A = (Axα̇, 0, 0)t. The parallel axis theorem gives nonzero off-diagonal entries only in
the yz-component of I, and similarly for Rα2IsR

t
α2

; hence Ixy = Ixz = 0 for this shape change.

Thus I−1A = (I−1t,xxAxα̇, 0, 0)t, and the equation for L̇ can be written as L̇ = f(t)ML, where

M is a constant matrix given by M = d
dtRx(t)|t=0 and f(t) = I−1t,xx(α(t))Ax(α(t))α̇. Since M

is constant, we can solve the time-dependent linear equation and find

(11) Lt = Rx(−χ)Ls,

where

(12) χ =

∫ τ2

0
I−1t,xxAxα̇ dt =

∫ π

0
I−1t,xx(α)Ax(α) dα .

We take the limit τ2 → 0 and obtain the effect of the kick, which is a change in Ls by a rotation
of −χ about the x-axis. The larger the value of χ, the higher the twisting orbit is on the
sphere and thus the shorter the period. The energy after the kick is easily found by evaluating
the Hamiltonian at the new point Lt on the sphere with the new tensor of inertia It.D
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The tensor of inertia after the shape change is denoted by It. It does not change by
much in comparison to Is but is now nondiagonal; however, with the rotation Rx(P) it can
be rediagonalized to

(13) J = diag(Jx, Jy, Jz) = Rx(−P)ItRx(P),

where in general the eigenvalues are distinct. The precise formula for P depends on the inertia
properties of the model; the value for a realistic model with 10 segments can be found in [15].
Formulas for Ax(α) in terms of realistic inertial parameters are also given in [15].

In stage 3 the twisting somersault occurs, where we assume an integer number of twists
occur. This corresponds to an integer number of repetitions of the periodic orbit of the rigid
body with energy Et and tensor of inertia It. Let Tt be the period of this motion. As already
pointed out the amount of rotation about the fixed angular momentum vector l cannot be
directly seen on the L-sphere. Denote this angle of rotation by φ. We need the total change
∆φ to be an odd multiple of π for head-first entry. The amount ∆φ can be split into a dynamic
phase and a geometric phase, where the geometric phase is given by the solid angle S enclosed
by the curve on the L-sphere [10, 1].

We are going to derive the formula for ∆φ here because we need a special normalization
appropriate for our setting. The essential ingredient in this formula is the solid angle S
enclosed by the orbit on the L-sphere; see [10, 9, 1]. In the following two lemmas we consider
the rigid body with constant diagonal moments of inertia J and energy E. When we return
to the twisting somersault this will be applied to the twisting phase where E = Et.

Lemma 4. The solid angle on the sphere L2 = l2 enclosed by the intersection with the
ellipsoid LJ−1L = 2E is given by

(14) S(h, ρ) = 2π − 4hg

π

(
Π(ν, k2)−K(k2)

)
,

where k2 = ρ(1 − hρ)/(2h + ρ), ν = 1 − hρ, g = (1 + h/ρ)−1/2, h = (EJy/l
2 − 1/2)/µ,

ρ2 = (1− Jy/Jz)/(Jy/Jx − 1), µ2 = (Jy/Jx − 1)(1− Jy/Jz).

Proof. We do a scaling similar to that done in [12]. Introducing Lx = lx, Ly = ly,
Lz = lz the equation 1

2LJ−1L = E can be written in dimensionless form (Jy/Jx)x2 + y2 +

(Jy/Jz)z
2 = 2EJy/l

2. Cylindrical coordinates for the scaled sphere are x =
√

1− z2 sinψ,
y =
√

1− z2 cosψ, and they introduce canonical coordinates (z, ψ). The critical point z = 0,
ψ = 0 is a saddle point of the Hamiltonian, and the energy is shifted so that the critical value
of Hamiltonian is zero. Moreover, time is scaled by the eigenvalue µ of the linearized Hamilton
equations. Thus we arrive at

H(z, ψ) =
1

2

(
z2(ρ+ ρ−1 sin2 ψ)− ρ−1 sin2 ψ

)
.

The solid angle is determined by the area between the curve H(z, ψ) = h and the equator
z = 0 of the sphere. The reason for this is that the projection of the (normalized) sphere
onto the cylinder (z, ψ) is area preserving. Thus we find S =

∫ 2π
0 z dψ, where z is obtained byD
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1816 HOLGER R. DULLIN AND WILLIAM TONG

taking the positive root of H(z, ψ) = h. We are only interested in solutions where z is defined
for all ψ, which corresponds to twisting motion where 0 < 2h ≤ ρ. Thus we find that

(15) S(h, ρ) =

∫ 2π

0

√
2hρ+ sin2 ψ√
ρ2 + sin2 ψ

dψ

and this is a complete elliptic integral that can be written in the stated form using standard
techniques.

Remark 4.1. The essential parameter is EJy/l
2 inside h, and all other dependencies are

on certain dimensionless combinations of moments of inertia.

Remark 4.2. We reiterate that in our normalization, S is the solid angle enclosed by the
curve and the equator. When h → ρ/2, equation (15) gives 2π as desired. Similarly, when
h → 0, the minimal area 4 arctan ρ−1 is attained, which goes to zero in the symmetric case
Jx = Jy > Jz since ρ→∞.

Using this lemma we can find simple expressions for the period and rotation number by
noticing that the action variables of the integrable system on the L-sphere are proportional
to the product of S and l.

Lemma 5. The derivative of the action I = lS/(2π) with respect to the energy E gives
the inverse of the frequency (2π)/T of the motion, such that the period T is (notation as in
Lemma 4)

(16) T =
4πg

µl
K(k2) ,

and the derivative of the action I with respect to l gives the rotation number as −2πW =
S − 2ET/l, and hence a splitting into geometric phase and dynamic phase.

Proof. The main observation is that the symplectic form on the L-sphere of radius l is the
area-form on the sphere divided by l and that the solid angle on the sphere of radius l is the
enclosed area divided by l2. Note that unlike in Lemma 4 we are not using scaled variables.
Thus the action of the integrable reduced Euler equations denoted by I (in the twisting stage
with constant moment of inertia I and A = 0) is I = lS/(2π) and the area is l2S. Clearly the
action of the integrable system is determined by the solid angle, up to a factor. The reason
that the essential object is the solid angle is that the Euler top has scaling symmetry: If L is
replaced by sL, then E is replaced by s2E and the solid angle remains the same. The scaling
symmetry implies that the essential parameter is the ratio E/l2 which is invariant under
scaling. So the solid angle is a function of E/l2 only, as we have shown in the previous lemma.
The formulas claimed in this lemma follow from simple implicit differentiation. When a one
degree of freedom system is written in terms of action-angle variables, we have E = H(I), and
the frequency of motion is given by ∂H/∂I; hence the period is T/(2π) = ∂I/∂E. Therefore
differentiating the action I = lS(E/l2)/(2π) with respect to E gives

(17)
T

2π
=
∂I
∂E

=
∂lS(E/l2)

2π∂E
=

1

2πl
S′(E/l2)D
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and standard identities of complete elliptic integrals give the stated result. When a two
degree of freedom integrable system is written in terms of action-angle variables, we have
E = H(I1, I2). Now the frequencies are given by ∂H/∂Ii, and for given E their ratio defines
the rotation number W . By implicit differentiation at constant energy a formula for W can
be derived. In the present case we have I1 = I and I2 = l. Specifically, l is the momentum
of a global S1 action and hence independent of E. Thus the simple formula W = −∂I/∂l
results. Using the form of I as above then gives

−2πW = −2π
∂I
∂l

=
∂lS(E/l2)

∂l
= S(E/l2)− 2E

l2
S′(E/l2) = S − 2ET

l
.(18)

Remark 5.1. What is not apparent in these formulas is that the scaled period lT is a
relatively simple complete elliptic integral of the first kind (depending on E/l2 only), while S
and W are both complete elliptic integrals of the third kind (again depending on E/l2 only).

Remark 5.2. The splitting of the rotation number into geometric phase and dynamic phase
for the Euler top goes back to Montgomery [10]. His formula gives the rotation number
modulo 1 only. By choosing a particular set of coordinates for the reduction, Bates, Cushman,
and Savev [1] were able to remove the modulo operation in the formula. In Lemma 5 we
have derived a related formula without the modulo, but it turns out to be different. The
explanation is that the rotation number in an integrable system is only defined up to modular
transformations. This results from the fact that actions are only defined up to transformations
from the special linear group over the integers. Specifically, our “solid angle” is different in
that it is measured relative to the equator. Accordingly our rotation number differs from the
rotation number in [1].

This concludes our two lemmas about the dynamics of the rigid body, which we are now
going to apply specifically to the twisting stage 3. The main observation is that the rotation
numbers times 2π gives the amount the somersault angle has changed during one period of
the twisting motion.

Theorem 6. The total amount of rotation ∆φkick about the fixed angular momentum axis l
for the kick-model when performing n twists is given by

(19) ∆φkick = (τ1 + τ5)
2Es

l
+ τ3

2Et

l
− nS .

The first terms are the dynamic phase where Es is the energy in the somersault stages and Et

is the energy in the twisting somersault stage. The last term is the geometric phase where S
is the solid angle enclosed by the orbit in the twisting somersault stage. For equal moments of
inertia Jx = Jy the solid angle S is

(20) S = 2π sin(χ+ P)

and in general is given by Lemma 4 where E = Et. To perform n twists the time necessary is
τ3 = nTt, where for equal moments of inertia Jx = Jy the period Tt is

(21) Tt =
2π

l

(J−1y − J−1z )−1

sin(χ+ P)

and in general is given by Lemma 5 where T = Tt.D
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1818 HOLGER R. DULLIN AND WILLIAM TONG

Proof. Each stage contributes to the somersault angle (as long as τi > 0). For the pure
somersaulting stages 1 and 5 we simply need to compute the angular velocity times the time.
For stage 3 the contribution is given by the rotation number found in Lemma 5. Montgomery
[10] gave a splitting of the overall rotation of a rigid body into geometric phase and dynamic
phase. Our formula is similar in spirit, with the added feature that there is no mod 2π for
∆φkick: We actually need to know how many somersaults occurred. We can prove the theorem
by applying Lemma 5 to each stage of the dive. Stages 2 and 4 do not contribute because
τ2 = τ4 = 0. In stages 1 and 5 the trajectory is at an equilibrium point on the L-sphere, so
there is only a contribution to the dynamic phase. The essential terms come from stage 3,
which is the twisting somersault stage without shape change. When computing S we need
to choose a particular normalization of the integral which is different from [10, 9], and also
different from [1]. Our normalization is such that when Jx = Jy the amount of rotation
obtained is the corresponding angle φ of the somersault, i.e., the rotation about the fixed
axis l in space. This means that the correct solid angle for our purpose is such that when
Jx = Jy and the motion is approaching pure somersaulting the contribution from S approaches
zero. Therefore, we should measure area relative to the equator on the sphere, as we did in
Lemma 4. When Jx = Jy we are simply measuring the area of a slice of the sphere bounded
by the equator and the twisting somersault orbit. The orbit is contained in a plane, which is
found by parallel translating the equatorial plane down by l sin(χ+P), and then tilting it by
the small angle P; see Figure 1. The tilt can be ignored since it does not change the enclosed
solid angle which thus is 2π sin(χ + P). In the general case where Jx 6= Jy the area can be
computed in terms of elliptic integrals as given in Lemma 4. Similarly, the period of the
motion along H = Et can be computed either from explicit solutions of the Euler equations
for Jx = Jy leading to (21), or by elliptic integrals as in Lemma 5.

Now we have all the information needed to construct a twisting somersault. A result of
the kick approximation is that we have τ2 = τ4 = 0, and if we further set τ1 = τ5 = 0, then
there is no pure somersault either, which makes this the simplest twisting somersault. We call
this dive the pure twisting somersault and take it as a first approximation to understanding
the more complicated dives.

Corollary 7. A pure twisting somersault with m somersaults and n twists is found for τ1 =
τ2 = τ4 = τ5 = 0 and must satisfy

(22) 2πm =

(
2lTt

Et

l2
− S

)
n,

where both S and lTt are functions of Et/l
2 only (besides inertial parameters).

Proof. This is a simple consequence of the previous theorem by setting ∆φ = 2πm, τ3 =
nTt, and τ1 = τ5 = 0.

Remark 7.1. Solving (22) for m/n gives a rotation number of the Euler top, which char-
acterizes the dynamics on some 2-tori of the superintegrable Euler top. This rotation number
is equivalent up to unimodular transformations to that of Bates, Cushman, and Savev [1]; see
Remark 5.2.
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TWISTING SOMERSAULT 1819

Remark 7.2. The number of somersaults per twists is m/n, and (22) determines Et/l
2

(assuming the inertial parameters are given). Having Et/l
2 determined in this way means one

would need to find a shape change or kick which achieves that Et/l
2, and large values of Et/l

2

can be hard or impossible to achieve. For the one-arm kick-model discussed above the energy
that is reached is given by

(23)
Et

l2
=

1

2
LsRx(χ+ P)JRx(−χ− P)Ls/l

2.

Remark 7.3. Given a particular shape change (say, in the kick approximation) the result-
ing Et/l

2 will in general not result in a rational rotation number and hence not be a solution
of (22). In this case the pure somersault of stage 1 and/or stage 5 needs to be used to achieve
a solution of (19) instead.

Remark 7.4. The signs are chosen so that S is positive in the situation we consider. Thus
the geometric phase lowers ∆φ and can be thought of as an additional cost to total rotation
that twisting adds on to somersaulting.

The total airborne time Tair has small variability for platform diving and is bounded above
for springboard diving. A typical dive has 1.5 < Tair < 2.0 seconds. After Et/l

2 is determined
by the choice of m/n the airborne time can be adjusted by changing l (within the physical
possibilities) while keeping Et/l

2 fixed. Imposing Tair = τ1 + τ5 + τ3 we obtain the following.

Corollary 8. A twisting somersault with m somersaults and n twists in the kick-model must
satisfy

(24) 2πm+ nS = Tair
2Es

l
+ 2nlTt

Et − Es

l2
,

where Tair − τ3 = τ1 + τ5 ≥ 0.

4. The general twisting somersault. The kick-model gives a good understanding of the
principal ingredients needed in a successful dive. In the full model the shape-changing times
τ2 and τ4 need to be set to realistic values. We estimate that the full arm motion takes at least
about 1/4 of a second. So instead of having a kick connecting Ls to Lt(0), a piece of trajectory
from the time-dependent Euler equations needs to be inserted, which can be seen in Figure 3.
The computation of the two dive segments from stages 2 and 4 has to be done numerically in
general. Nevertheless, there is a beautiful generalization of Montgomery’s formula [10] due to
Cabrera [3], which holds in the nonrigid situation. In Cabrera’s formula the geometric phase
is still given by the solid angle enclosed by the trajectory; however, for the dynamic phase
instead of simply 2ET we actually need to integrate L ·Ω from 0 to T . Now when the body
is rigid we have 2E = L · Ω = const and Cabrera’s formula reduces back to Montgomery’s
formula.

Theorem 9. For the full model of a twisting somersault with n twists, the total amount of
rotation ∆Φ about the fixed angular momentum axis l is given by

(25) ∆φ = ∆φkick +
2Ē2τ2
l

+
2Ē4τ4
l

+ S−,D
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1820 HOLGER R. DULLIN AND WILLIAM TONG

A+A-

Figure 5. Areas A+ and A− corresponding to solid angles S+ = A+/l
2 and S− = A−/l

2. The geometric
phase correction due to the shape change is given by S−.

where S− is the solid angle of the triangular area on the L-sphere enclosed by the trajectories
of the shape-changing stages 2 and 4 and part of the trajectory of stage 3; see Figure 5. The
average energies along the transition segments are given by

(26) Ēi =
1

2τi

∫ τi

0
L ·Ω dt, i = 2, 4.

Proof. This is a straightforward application of Cabrera’s formula. For stages 1, 3, and
5, where there is no shape change the previous formula is obtained. For stages 2 and 4 the
integral of L · Ω along the numerically computed trajectory with time-dependent shape is
computed to give the average energy during the shape change.

Remark 9.1. This quantifies the error that occurs with the kick-model. The geometric
phase is corrected by the solid angle S− of a small triangle; see Figure 5. The dynamic phase
is corrected by adding terms proportional to τ2 and τ4. Note that if we keep the total time
τ2 + τ3 + τ4 constant, then we can think of the shape-changing times τ2 and τ4 from the full
model as being part of the twisting somersault time τ3 of the kick-model. The difference is
2
(
(Ē2 − Et)τ2 + (Ē4 − Et)τ4

)
/l, and since both Ē2 and Ē4 < Et, the dynamics phase in the

full model is slightly smaller than in the kick-model.

Remark 9.2. As Et is found using the endpoint of stage 2 it can only be calculated nu-
merically now.

The final step is to use the above results to find parameters that will achieve m somersaults
and n twists, where typically m is a half-integer and n an integer.

Corollary 10. A twisting somersault with m somersaults and n twists satisfies

(27) 2πm+ nS − S− = Tair
2Es

l
+ 2τ2

Ē2 − Es

l
+ 2τ4

Ē4 − Es

l
+ 2τ3

Et − Es

l
,D
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Tmin

Tmax

97.1
94.3

91.4
88.6

85.7

138.7
134.7

130.6
126.6

122.5

n=4
n=3
n=2
n=1
n=0

90 100 110 120 130 140
l

1.4

1.6

1.8

2.0

2.2

2.4

Tair

Figure 6. The relationship between airborne time Tair and angular momentum l when τ2 = τ4 = 1/4 is
used in Corollary 10. The result is for the case of m = 1.5 somersaults with different numbers of n twists. The
maximum number of twists is n = 4 since we need Tair − τ2 − τ3 − τ4 = τ1 + τ5 ≥ 0.

where Tair − τ2 − τ3 − τ4 = τ1 + τ5 ≥ 0.

Remark 10.1. Even though Ē2, Ē4, Et, and S− have to be computed numerically in this
formula, the geometric interpretation is as clear as before: The geometric phase is given by
the area terms nS and S−.

In the absence of explicit solutions for the shape-changing stages 2 and 4, we have numer-
ically evaluated the corresponding integrals and compared the predictions of the theory to a
full numerical simulation. The results for a particular case and parameter scan are shown in
Figures 3 and 6, respectively, and the agreement between theory and numerical simulation
is extremely good. Fixing the shape change and the time it takes determines Et/l

2, so the
essential parameters to be adjusted by the athlete are the angular momentum l and airborne
time Tair (which are directly related to the initial angular and vertical velocities at take-off).
Our result shows that these two parameters are related in a precise way given in Corollary 10.
At first it may seem counterintuitive that a twisting somersault with more twists (and same
number of somersaults) requires less angular momentum when the airborne time is the same,
as shown in Figure 6 for m = 3/2 and n = 0, 1, 2, 3, 4. The reason is that while twisting, the
moments of inertia relevant for somersaulting are smaller than not twisting, since pure som-
ersaults take layout position as shown in Figure 2a, and hence less overall time is necessary.
In reality, the somersaulting phase is often done in pike or tuck position which significantly
reduces the moment of inertia about the somersault axis, leading to the intuitive result that
more twists require larger angular momentum when airborne time is the same.
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