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Disruptions in airline transportation systems can prevent airlines from executing their
schedules as planned. Adverse weather conditions, congestion at airports, and mechani-

cal failures often hinder a flight schedule. During such events, decision makers must resched-
ule flight legs, and reroute aircraft, pilots, and passengers. We present an optimization model
that reschedules legs and reroutes aircraft by minimizing an objective function involving
rerouting and cancellation costs. We develop a heuristic for selecting which aircraft are
rerouted, and we provide proof of concept by evaluating our model using a simulation of
airline operations. Finally, we revise the model to minimize crew and passenger disruptions.

Airlines frequently encounter disruptions that pre-
vent them from operating as planned. Severe weather
conditions, such as icing on a runway, can close an
airport. Unscheduled maintenance problems with an
aircraft can require days to repair. When disruptions
occur, the airlines must reschedule flight operations,
and an airline’s recovery policy determines which flight
legs to delay and cancel and how to reroute the air-
craft, pilots, and passengers. Airlines typically recover
from disruptions in stages. The first stage, aircraft
recovery, reroutes the aircraft and delays and cancels
flight legs. During the second recovery stage, crew
recovery, the airline assigns pilots to the uncanceled
flight legs by rerouting the regularly scheduled pilots
and calling on reserve pilots. Finally, passenger recovery
reroutes the passengers. Recent literature describes
integrated or hybrid models that solve aircraft, crew,
and passenger recovery problems. Lettovský (1997)
presents a multifleet integrated recovery model, and
Clarke (1997a, b) solves a multifleet aircraft recovery
model that minimizes lost passenger revenue on sin-
gle flight leg itineraries and enforces crew availability
constraints.
In this paper, we present an optimization model

for aircraft recovery (ARO). In §1, we describe the

problem and how the airlines can use it in prac-
tice. In §2, we discuss relevant literature and our
contributions. Section 3 describes an integer program
for aircraft recovery. In §4, we give a heuristic for
selecting a subset of aircraft that are considered in
the recovery model. In §5, we present computational
results that demonstrate that the results from solv-
ing our model are significantly better than those of
traditional models in terms of cancellations, on-time
performance, and disrupted passengers. Section 6
describes a revised aircraft recovery model that mini-
mizes disrupted crews and passengers.

1. Problem Description
A station is an airport that an airline serves, and a leg
has an origin station, a destination station, a depar-
ture time, and an arrival time. A route is a sequence
of legs, and prior to each disruption, the aircraft are
scheduled to fly a set of initial routes. Upon the real-
ization of a disruption during which the initial aircraft
routes become infeasible, ARO provides a new route
for each aircraft. The new routes must comply with
the airline’s and the FAA’s rules that require each air-
craft to receive periodic maintenance service. A route
that satisfies all of these rules is maintenance feasible.
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ROSENBERGER, JOHNSON, AND NEMHAUSER
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In this paper, we show how ARO solves two classes
of disruptions. Aircraft disruptions arise when a plane
is not available to fly at least one of its assigned
flight legs. Unscheduled maintenance problems and
prolonged in-flight delays induce aircraft disruptions.
Severe weather and airport congestion provoke sta-
tion disruptions that reduce the number of landings
and takeoffs allowed. In fact, weather accounts for
approximately 75% of airline disruptions (Dobbyn
2000). During inclement weather and congestion at
an airport, the Federal Aviation Administration (FAA)
increases the time between consecutive landings. The
FAA has experimented with several programs in an
effort to reduce the rate of arrivals at an airport.
In the early 1980s, the FAA began ground delay

programs (GDPs) that allocate arrival time periods, or
slots, for each flight leg landing at a specific airport.
Subsequently, the airlines could propose reassigning
legs to the arrival slots. However, there are restrictions
in reassignment, and the central flow control division
of the FAA must approve the airline’s revised sched-
ule (Vasquez-Marquez 1991). The primary advantage
of a GDP is that those legs arriving at a disrupted
airport are delayed prior to takeoff. Consequently, air
traffic control (ATC) does not force the aircraft to cir-
cle the airspace of the disrupted airport, which endan-
gers passengers and increases the cost of fuel and
pilots. Since the introduction of GDPs, the FAA has
removed most of the reassignment restrictions, and
airlines will likely assign legs to slots freely within
a few years (Federal Aviation Administration 1999,
Andreatta et al. 2000, Carlson 2000, Chang et al. 2001,
Metron, Inc. 2001). In this paper, we make:

Assumption 1. The airlines assign legs to a given set
of arrival slots.

Even though some disruptions are severe enough
to impose slots on an airline flight schedule, other
disruptions, such as mishandled luggage and over-
booked flight legs, do not warrant such action. During
these disruptions, a heuristic might provide a quick
solution. Push-back is a recovery heuristic that delays
legs until their assigned aircraft and crews are ready
to fly. Figure 1 depicts a disruption decision process
in which a decision maker must choose whether a
disruption is severe enough to reroute the aircraft.

Passenger

No Yes

Reroute
Aircraft?

Controller

Perform

Push-Back
Recovery

Aircraft
Recovery

Disruption

Should

Recovery

Crew and

Figure 1 Disruption Decision Process

Consider the following delay threshold policy. Upon
the realization of a disruption, estimate the delays
incurred by using push-back. If the maximum esti-
mated delay is over a threshold value, use ARO to
construct new routes for the aircraft. Determining the
optimal delay threshold is nontrivial, and we will con-
sider the threshold as a parameter.
Aircraft of the same fleet type have approximately

the same passenger capacities, ranges, and velocities.
Airline planners assign fleet types to legs considering
passenger demand and distance for each leg. More-
over, crews are limited to flying only a few fleets,
and the crew-scheduling problem is separated by fleet
type. Airlines will reassign fleet types as late as the
morning of a leg if demand changes, and they find
a feasible crew reassignment (Berge and Hopperstad
1993, Talluri 1996). The airlines typically avoid reas-
signing fleets during operational disruptions because
reassignment could complicate crew and passenger
recovery. On occasions in which an airline reassigns
fleet types, it solves aircraft recovery within the same
fleet as a subproblem, and reroutes crews and pas-
sengers (Lettovský 1997). ARO’s structure allows for
multiple fleet types; however, because it does not
reroute crews and passengers, we make:

Assumption 2. ARO reroutes aircraft only from the
same fleet.
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Assumption 2 requires an amendment to Assump-
tion 1 because arrival slots are infrequently specific to
fleet types. We assume that a decision maker assigns
slots to fleet types prior to solving ARO; that is,
Assumption 1 is valid within each fleet.
In practice, recovery is implemented in the airline

operations control center (AOCC), and most decisions
are made intuitively by the controllers (Clarke 1997c).
Controllers have several options when they encounter
disruptions, which include delaying and cancelling
legs, and rerouting the aircraft. During severe disrup-
tions, operations controllers will occasionally have an
aircraft fly without passengers (ferrying), to an alter-
nate airport (diverting), or to another scheduled desti-
nation (over-flying). Such operations are expensive and
disrupt passenger itineraries. Consequently, the air-
lines try to avoid such recovery policies in practice,
and our implementation ignores them even though
our model could include them.
Example 1. Figure 2 displays two planes and their

initial routes. The solid lines represent flights with
their numbers below them. The horizontal dotted
lines indicate time between legs, and the location is
given by the three letter airport code above the lines.
The vertical dotted lines depict the time shown below
them.
Upon the arrival of Flight 14 into Madison (MSN),

consider an unscheduled maintenance disruption that
prevents Plane A from flying until Monday at 19:00.
A solution to the disruption is to cancel Flights 15 and
16 and have Plane A continue to fly Flight 17. Another
solution is to cancel Flights 11 and 12, assign Plane A

Mon
10:00

Tues
8:0019:00

Tues

MSN

SAVMSN

22

SAV MSN

OAK MSN

12

MSN

MSN

EWR

MDW

11

21

13 24 2518

14 15 16 17 28

Plane B

Plane A

16:00
Mon
24:00

Mon

Figure 2 Example Initial Routes

to Flights 13 and 24, assign Plane B to Flights 15,
16, 17, and 28, and return the planes to their original
routes before the departures of Flights 21 and 25 on
Tuesday morning at MSN.

2. Literature Review and
Contributions

As disruptions become more frequent in airline opera-
tions, the demand for good automated recovery tools
to assist decision makers becomes more significant.
Although very few airlines use automated recovery
policies, there are many papers on this topic. Related
literature on aircraft disruptions includes Teodorović
and Guberinić (1984), Teodorović and Stojković (1990,
1995), Jarrah et al. (1993), Mathaisel (1996), Rakshit
et al. (1996), Yan and Yang (1996), and Thengvall et al.
(2000). As GDPs continue to evolve and allow more
freedom to the airlines, new models on station dis-
ruptions appear. In the earlier work, not only do the
airlines recover from a GDP, but the FAA uses deci-
sion support to assign legs to slots. Literature on air-
line recovery in the event of a GDP includes Vasquez-
Marquez (1991), Luo and Yu (1994a, b; 1997), and
Cao and Kanafani (2000). Richetta and Odoni (1993),
Vran et al. (1994), and Hoffman (1997) assign slots to
each airline for the FAA. Although these articles are
specific to older versions of GDPs, the airlines and
the FAA can use them during modern GDPs with
simple modifications. More recent literature, such as
Andreatta et al. (2000) and Carlson (2000), assume
that airlines are unrestricted when assigning legs to
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slots. Yan and Lin (1997) describe a model for air-
port closures, and models in Berge et al. (1993), Talluri
(1996), and Yan and Tu (1997) reassign fleets when
flight demand changes.
Many recovery models consider only the next leg,

or a small subset of legs at a single station, after a
disruption. These models represent the cost of a can-
celled or delayed leg as a single value. However, can-
celling a leg could require an airline to cancel several
additional legs or to ferry an aircraft. Similarly, rerout-
ing aircraft for future legs could reduce the down-
stream impact of a delay. Therefore, we believe that a
solution to a model should address these issues. Other
recovery models solve a network flow problem that
ignores maintenance constraints. In earlier literature,
recovery models successively determine a route for
each aircraft. Clarke (1997a, b) constructs new routes
for each aircraft in a subproblem that considers sin-
gle leg passenger itineraries, and uses constraints for
crew availability in the master problem.
Integrated recovery models reassign fleets to legs,

and solve aircraft, crew, and passenger recovery
simultaneously (Lettovský 1997). However, exact
algorithms for the integrated recovery are intractable.
Lettovský (1997) proposes a model for aircraft recov-
ery for each fleet as a subproblem but provides no
computational results.
ARO generates possible new routes for each air-

craft a priori, and then determines the optimal set of
routes. This is similar to the model in Clarke (1997a, b)
and the aircraft recovery component of the integrated
model presented by Lettovský (1997). The primary
advantage of these models is that an AOCC con-
troller can exclude undesirable routes, such as high
risk or maintenance infeasible ones, prior to opti-
mization. However, such models are computationally
intensive. In Clarke (1997a, b), most of the compu-
tational instances use a relatively small fleet of 49
aircraft and 201 legs, and CPU times are not given.
Our contribution includes an aircraft selection heuris-
tic (ASH) for ARO, which selects a subset of aircraft
for optimization prior to generating new routes. Con-
sequently, we can solve many large recovery instances
quickly.
Traditional aircraft recovery models are tested on

a small set of event disruptions. United Airlines

implemented the model from Jarrah et al. (1993) and
Rakshit et al. (1996). Clarke (1997a) provides a proof
of concept by simulating a few scenarios of irregular
operations. Our contribution includes an evaluation
of ARO that is more rigorous than that of traditional
models. We simulated 500 days of airline operations
using a stochastic model from Rosenberger et al.
(2002) and ARO to reroute the aircraft.
Integrated and hybrid recovery models include

crew and passenger recovery when rerouting aircraft.
We provide a revised aircraft recovery model that
minimizes disruptions to crew pairings and passenger
itineraries.

3. Model
We model the aircraft recovery problem as a set-
packing problem in which each leg is either in exactly
one route or cancelled. Consider a set of aircraft P , a
set of disrupted aircraft P ∗ ⊆ P , and a time horizon
�t0�T �. For each p ∈ P , let r�p� be the initial route of
aircraft p, and let F =⋃

p∈P r�p� be the set of all legs in
the initial routes. For each f ∈ F , let bf be the cost of
cancelling leg f , and let

Kf =
{
1 if leg f is cancelled,

0 otherwise.

Typically, bf would be related to revenue lost from
cancelling leg f . For each aircraft p ∈ P , let R�p�F � be
the set of maintenance feasible routes of aircraft p that
can be constructed from legs in F . For each route r ∈
R�p�F �, let cr be the cost of assigning Route r to aircraft
p, and let

Xr =
{
1 if Route r is assigned to aircraft p,

0 otherwise.

For example, cr could include penalties for schedul-
ing delays imposed by Route r , plane swaps, and any
other factors that yielded differences from the original
schedule. Determining costs bf and cr can be chal-
lenging. However, anecdotal evidence suggests that
operations controllers minimize cancellations, delay
minutes, and total delays sequentially until they find
a unique optimal solution. Controllers could adjust bf
and cr according to similar priorities.

Transportation Science/Vol. 37, No. 4, November 2003 411

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
5.

69
.2

4.
17

1]
 o

n 
18

 J
ul

y 
20

17
, a

t 0
2:

11
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



ROSENBERGER, JOHNSON, AND NEMHAUSER
Rerouting Aircraft for Airline Recovery

Let U be the set of allocated arrival slots. For each
slot u ∈ U , we use the FAA practice of allowing only
one landing at a station within a time period, and
we let Ru be the set of routes that include a leg that
lands in arrival slot u. In addition to slots restrictions
assigned by the FAA, an airline will sometimes reduce
the number of legs in its flight schedule by imposing a
capacity constraint over some time horizon. Let A be
the set of such capacity constraints. For each capacity
constraint a ∈A, we restrict the number of landings at
a station within a time period to capacity �a. Let Ra

be the set of routes that include legs that land during
the time period of capacity constraint a, and for each
route r ∈ Ra, let H�r�a� be the set of legs in r that
impact constraint a.
The aircraft recovery integer program for ARO(P )

is:

Min
∑
p∈P

∑
r∈R�p� F �

crXr +
∑
f∈F

bf Kf (1)

∑
r∈R�p� F �

Xr = 1 ∀p ∈ P (2)

∑
r�f

Xr +Kf = 1 ∀ f ∈ F (3)

∑
r∈Ru

Xr ≤ 1 ∀u ∈ U (4)

∑
r∈Ra

	H�r�a�	Xr ≤ �a ∀a ∈A (5)

Xr ∈ �0�1� ∀ r ∈ R�p�F �� p ∈ P (6)

Kf ∈ �0�1� ∀ f ∈ F � (7)

Objective (1) is the cost of assigning routes to aircraft
and the cost of cancelling the unassigned legs. The
assignment constraints (2) assign one route to each air-
craft, and the packing constraints (3) ensure that each
leg is either in a route or is cancelled. Constraints (4)
and (5) are the slot constraints and the capacity con-
straints, respectively. Constraints (6) and (7) require
integral solutions. Lettovský (1997) describes the air-
craft recovery problem that minimizes cancellations,
c = 0 and b = 1.
Prior to solving the integer program, ARO(P ) gen-

erates the set of routes R�p�F � for each p ∈ P . In order
to ensure that an aircraft p can fly an assigned route
in R�p�F �, and the planes can fly legs that arrive after

time T , we impose conditions upon the new routes.
For each aircraft p ∈ P , let n�p� + 1 be the num-
ber of legs in the initial route r�p� of aircraft p, let
�f1�p�� � � � � fn�p�−1�p�� be the set of legs that depart after
time t0 and arrive before time T , let commencing flight
f0�p� be the leg previous to f1�p�, and let terminating
flight fn�p��p� be the next leg after fn�p�−1�p� assigned
to aircraft p. Observe that at time t0 each commenc-
ing flight is either in flight or has already landed.
In Figure 2, Flights 14 and 18 are the commencing
flights for Planes A and B, respectively. Flights 22
and 25 are the terminating flights. Because the disrup-
tion occurs after the arrival of commencing Flight 14,
every feasible route created for Plane A must begin
with Flight 14. Similarly, every route assigned to
Plane B must start with commencing Flight 18. For
each route r ∈R�p�F �, r begins with commencing flight
f0�p�, and r excludes all other commencing flights. We
guarantee that the legs arriving after Tuesday at 16:00
are assigned a plane by requiring that terminating
Flights 22 and 25 be assigned to different aircraft. For
each route r ∈R�p�F �, r ends with exactly one terminat-
ing flight, and r excludes all other terminating flights.
Observe that with Constraints (2) and (3), every solu-
tion to ARO will assign each terminating flight to a
unique aircraft.
Example 1 (Continued). Table 1 displays the pos-

sible routes that can be constructed without delay-
ing any legs. Routes 1–6 are possible new routes
for Plane A, while Routes 7–22 can be assigned to
Plane B. Observe that Routes 1–6 begin with com-
mencing Flight 14, Routes 7–22 begin with commenc-
ing Flight 18, and no route includes both commencing
flights. Each route ends with either terminating
Flight 22 or 25, and no route includes both flights.
Assuming that every route in Table 1 satisfies main-
tenance requirements, any pair of nonoverlapping
routes is a feasible solution.
Airlines often prefer recovery solutions that return

aircraft to their initial routes after a disruption.
Observe that ARO satisfies this preference by impos-
ing a penalty on each route r ∈ R�p�F � that does not
end with terminating flight fn�p�.

3.1. Aircraft Disruptions
When a disruption prevents an aircraft from flying at
least one of its assigned flight legs, other planes may

412 Transportation Science/Vol. 37, No. 4, November 2003
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Table 1 Routes That Can Be Constructed for the Example in Figure 2 Without Using Delays

Plane Routes

A Route 1 Route 2 Route 3

Departure Arrival Initial Departure Arrival Initial Departure Arrival Initial
Flt Station Station Plane Flt Station Station Plane Flt Station Station Plane

14 EWR MSN A 14 EWR MSN A 14 EWR MSN A
17 MSN MDW A 17 MSN MDW A 13 MSN EWR B
28 MDW MSN A 28 MDW MSN A 24 EWR MSN B
21 MSN SAV A 25 MSN OAK B 21 MSN SAV A
22 SAV MSN A 22 SAV MSN A

Route 4 Route 5 Route 6

Departure Arrival Initial Departure Arrival Initial Departure Arrival Initial
Flt Station Station Plane Flt Station Station Plane Flt Station Station Plane

14 EWR MSN A 14 EWR MSN A 14 EWR MSN A
13 MSN EWR B 21 MSN SAV A 25 MSN OAK B
24 EWR MSN B 22 SAV MSN A
25 MSN OAK B

B Route 7 Route 8 Route 9

Departure Arrival Initial Departure Arrival Initial Departure Arrival Initial
Flt Station Station Plane Flt Station Station Plane Flt Station Station Plane

18 MDW MSN B 18 MDW MSN B 18 MDW MSN B
15 MSN OAK A 15 MSN OAK A 11 MSN SAV B
16 OAK MSN A 16 OAK MSN A 12 SAV MSN B
17 MSN MDW A 17 MSN MDW A 17 MSN MDW A
28 MDW MSN A 28 MDW MSN A 28 MDW MSN A
21 MSN SAV A 25 MSN OAK B 21 MSN SAV A
22 SAV MSN A 22 SAV MSN A

Route 10 Route 11 Route 12

Departure Arrival Initial Departure Arrival Initial Departure Arrival Initial
Flt Station Station Plane Flt Station Station Plane Flt Station Station Plane

18 MDW MSN B 18 MDW MSN B 18 MDW MSN B
11 MSN SAV B 11 MSN SAV B 11 MSN SAV B
12 SAV MSN B 12 SAV MSN B 12 SAV MSN B
17 MSN MDW A 13 MSN EWR B 13 MSN EWR B
28 MDW MSN A 24 EWR MSN B 24 EWR MSN B
25 MSN OAK B 21 MSN SAV A 25 MSN OAK B

22 SAV MSN A

Route 13 Route 14 Route 15

Departure Arrival Initial Departure Arrival Initial Departure Arrival Initial
Flt Station Station Plane Flt Station Station Plane Flt Station Station Plane

18 MDW MSN B 18 MDW MSN B 18 MDW MSN B
11 MSN SAV B 11 MSN SAV B 13 MSN EWR B
12 SAV MSN B 12 SAV MSN B 24 EWR MSN B
21 MSN SAV A 25 MSN OAK B 21 MSN SAV A
22 SAV MSN A 22 SAV MSN A
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Table 1 (cont’d.)

Plane Routes

Route 16 Route 17 Route 18

Departure Arrival Initial Departure Arrival Initial Departure Arrival Initial
Flt Station Station Plane Flt Station Station Plane Flt Station Station Plane

18 MDW MSN B 18 MDW MSN B 18 MDW MSN B
13 MSN EWR B 17 MSN MDW A 17 MSN MDW A
24 EWR MSN B 28 MDW MSN A 28 MDW MSN A
25 MSN OAK B 21 MSN SAV A 25 MSN OAK B

22 SAV MSN A

Route 19 Route 20 Route 21

Departure Arrival Initial Departure Arrival Initial Departure Arrival Initial
Flt Station Station Plane Flt Station Station Plane Flt Station Station Plane

18 MDW MSN B 18 MDW MSN B 18 MDW MSN B
15 MSN OAK A 15 MSN OAK A 21 MSN SAV A
16 OAK MSN A 16 OAK MSN A 22 SAV MSN A
21 MSN SAV A 25 MSN OAK B
22 SAV MSN A

Route 22

Departure Arrival Initial
Flt Station Station Plane

18 MDW MSN B
25 MSN OAK B

fly legs on the route of the disrupted aircraft. Suppose
that, at time t0, a controller realizes an aircraft p∗ is
unavailable to fly until time tp∗ . Consequently, the set
of feasible routes R�p∗� F � excludes legs departing dur-
ing time interval �t0� tp∗�. Let s�p∗� be the station where
p∗ will be located at tp∗ . Because we would like p∗ to
continue flying out of station s�p∗�, we select a time
horizon �t0�T �, where T > tp∗ , such that the set of all
legs F includes at least one continuation flight, which
departs station s�p∗� after time tp∗ and before time T .
For example, Flights 13, 17, 21, and 25 are continu-
ation flights, departing from Madison after 19:00 on
Monday. If more than one aircraft is disrupted, ARO
restricts the set of routes for each disrupted aircraft
to exclude those routes that have legs during their
disruptions, and we select a sufficiently large T to
include continuation flights for each aircraft.

3.2. Station Disruptions
When weather and congestion reduce the capacity at
an airport, the FAA provides a set of slots U for each

airline at the disrupted station, and an airline assign
legs to the set of slots U . The set of disrupted air-
craft includes those whose initial routes have a leg
that must be assigned a slot; that is,

P ∗ = {
p ∈ P 	 ∃u ∈ U�Ru � r�p�

}
�

The time horizon �t0�T � includes every leg that needs
slot assignment, and so

t0 ≤min
u∈U

�t1u��

and
T ≥max

u∈U
�t2u��

where �t1u� t
2
u� is the time period of slot u ∈ U . The

time horizon is determined similarly when an airline
applies a capacity constraint to its flight schedule. In
rare instances, such as repaving or icing on a runway,
the FAA will temporarily close an airport. For this
purpose, we include a zero-capacity constraint, a ∈ A

such that �a = 0.
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4. Aircraft Selection Heuristic
Typically, the number of new routes in

⋃
p∈P R�p� F � is

extremely large when the time horizon �t0�T � is sig-
nificantly long. Table 1 displays 22 routes for an exam-
ple that consists of only 2 planes and a 30-hour time
horizon. Because most real aircraft recovery instances
have between 30 and 150 planes and time horizons
can be longer, the number of routes can be very large.
However, decision makers must solve ARO in real
time. In order to reduce the complexity of ARO, we
select a subset of aircraft P ′ such that P ∗ ⊆ P ′ ⊆ P .
We would like to select P ′ ⊂ P such that the opti-
mal value of solutions to ARO(P ′) is near the opti-
mal value of a solution to ARO(P ). In some instances
P ∗ = P , so P ′ = P . However, in practice such instances
are extremely rare and are often limited to multiple
hubs shutting down for a prolonged period of time
or closing the National Airspace System.
We define some theoretical properties of aircraft

recovery, and then we present an aircraft selection
heuristic (ASH) for selecting P ′.

4.1. Theoretical Properties
Consider a route of an aircraft, r = �f0� � � � � fn�. A route
must maintain flow balance; that is, for any leg fi ∈
r , the next leg fi+1 must depart from the same sta-
tion where fi arrives. A subsequence of legs, subroute
�fi� � � � fj �, is a cancellation cycle if fi departs from the
same station where fj arrives. Observe that cancella-
tion cycles include at least two flight legs because a
single leg never has the same origin and destination.
The following proposition is obvious.

Proposition 1. For any cancellation cycle � ∈ r , r−�

maintains flow balance.

For example, by removing the cancellation cycle that
includes Flights 17 and 28 from Route 1 in Table 1,
we have Route 5, which maintains flow balance. Con-
sequently, removing any set of disjoint cancellation
cycles from a feasible route also maintains flow bal-
ance. Unfortunately, the removal of a cancellation
cycle can prevent a route from being maintenance fea-
sible if a station in the cancellation cycle is a mainte-
nance base.
During aircraft recovery, operations controllers

might delay legs. Delays allow for many additional

Table 2 Flights 11, 12, and 25 Are Sufficiently Delayed
to Construct a New Route for Plane B, Which
Does Not Maintain Original Ordering

Flight Departure Station Arrival Station

18 MDW MSN
13 MSN EWR
24 EWR MSN
11 MSN SAV
12 SAV MSN
25 MSN OAK

feasible routes, even though some may be impractical.
For example, by sufficiently delaying Flights 11, 12,
and 25 in Route 12 from Table 1, we could construct
the route shown in Table 2 for Plane B. A route r =
�f0� � � � � fn� maintains original ordering if for any pair
of flights fi� fi+k ∈ r from the same initial route r�·�,
fi precedes fi+k in r�·�. The route depicted in Table 2
does not maintain original ordering because Flights 11
and 12 precede Flights 13 and 24 in the initial route
of Plane B.
For each aircraft p ∈ P , the set of routes R�p� r�p��

includes legs from the initial route r�p�. From Table 1,
Routes 1 and 5 are in RA�r�A�, and Routes 12, 14, 16,
and 22 are in RB�r�B�. If r�p� is feasible, then r�p� ∈
R�p� r�p��, and Proposition 1 implies that for any set of
disjoint cancellation cycles ! , r�p�−! maintains flow
balance.

Proposition 2. For any r ∈ R�p� r�p�� where r is origi-
nally ordered and does not include any ferries, diversions,
or over-flies, there exists a set of disjoint cancellation cycles
! such that r = r�p�−! .

Proof. r ⊆ r�p� because r does not include ferries,
diversions, over-flies, or legs from other initial routes.
It remains to be proven that r�p�−r is a set of disjoint
cancellation cycles. We assume r ⊂ r�p� because if r =
r�p�, the proof is trivial. Let fi�p� be the first leg in r�p�
but not in r . Route r must begin with commencing
flight f0�p�, i≥ 1, and so fi−1�p� must be in r�p� and r .
Similarly, Route r must end with a terminating flight,
so r includes at least two legs. Let fj be the next leg
after fi−1�p� in r . fj ∈ r�p� because r ⊆ r�p�, and fj flies
after fi−1�p� in r�p� because r is originally ordered. Let
the sequence of legs from fi−1�p� to fj in r�p� be

�fi−1�p�� fi�p�� � � � � fj−1� fj��
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The arrival station of fi−1�p� is the same as the depar-
ture station of fj because r maintains flow balance.
Because r�p� maintains flow balance, the departure
station of fi�p� is the same as the arrival station of
fi−1�p�, and the arrival station of fj−1 is the same as
the departure station of fj . Consequently, the depar-
ture station of fi�p� is the same as the arrival station
of fj−1. Thus, �fi�p�� � � � � fj−1� is a cancellation cycle.
Without loss of generality, this proof applies to the
first leg after fj that is in r�p� but not in r . We can con-
struct r by iteratively removing disjoint cancellation
cycles from r�p�− r . �

By ignoring ferries, diversions, and over-flies, and
relaxing maintenance constraints, Propositions 1 and
2 imply that if r�p� is feasible, then 	R�p� r�p��	, the num-
ber of originally ordered routes for aircraft p that can
be constructed with legs from r�p�, equals the num-
ber of sets of disjoint cancellations cycles in r�p� plus
one to account for the original route. The three sets
of nonempty disjoint cancellation cycles in r�B� are
shown in Table 3, and so, with the empty set, RB�r�B�

consists of Routes 12, 14, 16, and 22 in Table 1.
For any two aircraft pi� pj ∈ P , let F �pi� pj� be the set

of legs in r�pi�∪ r�pj�, and let

wpipj
= 	R�pi� F �pi� pj ��

	− 	R�pi� r�pi��
	

be the interaction of aircraft pi with aircraft pj ; that
is, wpipj

is the number of routes that can be con-
structed for pi with legs from F �pi� pj� and include at
least one leg from r�pj�. Observe that from Table 1,

Table 3 Flights 13 and 24, Flights 11 and 12, and
Flights 11, 12, 13, and 24 Are Nonempty
Sets of Disjoint Cancellation Cycles in the
Initial Route of Plane B

Flight Departure Station Station Arrival

13 MSN EWR
24 EWR MSN

11 MSN SAV
12 SAV MSN

11 MSN SAV
12 SAV MSN
13 MSN EWR
24 EWR MSN

wAB = 6−2= 4 and wBA = 16− 4 = 12. Let the inter-
action graph be a directed graph G = �P�E = ��pi� pj � 	
wpipj

> 0��.
We refer to a route of the form

r̂ = (
f0�pi�� � � � � fl�pi�� fk�pj �� � � � � fn�pj ��pj �

)
as a single swap route from pj to pi. Routes 2, 4, and 6
in Table 1 are single swaps from Plane B to Plane A,
and Routes 7, 9, 13, 15, 17, 19, and 21 are single swaps
from Plane A to Plane B.

Proposition 3. If there exists an arc �pi� pj � ∈ E, then
there exists a single swap Route r̂ from pj to pi that main-
tains flow balance.

Proof. Because �pi� pj � ∈ E, there exists a route r ⊂
F �pi� pj� for plane pi that includes at least one leg from
r�pj�. Let fk�pj� be the first leg in r from r�pj�, let
fl�pi� be the leg in Route r previous to leg fk�pj�, let
�fk+1�pj �� � � � � fn�pj ��pj �� be the set of legs after fk�pj� in
r�pj�, and let

r̂ = (
f0�pi�� � � � � fl�pi�� fk�pj �� fk+1�pj �� � � � � fn�pj ��pj �

)
�

Because, r�pi�, r�pj�, and r maintain flow balance, r̂
maintains flow balance. �

Observe that if there exists an arc �pi� pj � ∈ E,
r̂ is maintenance feasible and �fk�pj �� � � � � fn�pj ��pj ��

excludes zero-capacity constraints, then r̂ ∈R�pi� F �pi� pj ��
.

4.2. Heuristic Algorithm
Our ASH uses the graph G to create a set of aircraft
P ′ from a set of disrupted aircraft P ∗. For each dis-
rupted aircraft p∗ ∈ P ∗, ASH finds directed cycles in G

that include p∗. Let C = �p1� � � � � pn� be a directed cycle
in G where aircraft p1 ∈ P ∗, and let aircraft pn+1 = p1.
By Proposition 3, for each pi ∈ C, there exists a single
swap route r̂pi from pi+1 to pi that maintains flow bal-
ance, and so R̂ = �r̂p1� � � � � r̂pn � is a set of single swap
routes. Moreover, for each r̂pi ∈ R̂, if r̂pi is maintenance
feasible and excludes zero-capacity constraints, then
route r̂pi is a feasible route for aircraft pi. Observe
that R̂ might not provide a set of feasible routes if a
leg is covered by two routes. ASH attempts to over-
come this difficulty by finding many directed cycles
for each disrupted aircraft.
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Algorithm 1: Aircraft Selection Heuristic (ASH).

P ′ ← P ∗

for all p∗ ∈ P ∗ do
P ′�p∗�← �p∗�
l�P −p∗�←�
l�p∗�← 0
'�P�←NULL
P̂ ← (p∗)
i = 1
while �	P ′�p∗�	<MINPLANES�∧ �i ≤ 	P̂ 	� do

for all p′ ∈ �P − �P̂i� 	wP̂ip
′ > 0� do

if l�p′� > l�P̂i�+1 then
l�p′�← l�P̂i�+1
'�p′�← P̂i
if p′ � P̂ then
P̂ ← (P̂ � p′)

end if
else if p′ = p∗ then
p̃← P̂i
while p̃ �= p∗ do
P ′�p∗�← P ′�p�∪ �p̃�
P ′ ← P ′ ∪ �p̃�
p̃← '�p̃�

end while
end if

end for
i← i+1

end while
end for

For each disrupted aircraft p∗ ∈ P ∗, ASH, shown by
Algorithm 1, searches for directed cycles in G with a
minimum number of aircraft. The distance of a path
in G is the number of aircraft on the path. Given
a disrupted aircraft p∗, ASH maintains a set of air-
craft P ′�p∗� that are in directed cycles that include
aircraft p∗, and it uses an ordered list of aircraft P̂
whose shortest path distances to p∗ have already been
determined. Let P̂i be the ith aircraft in the ordered
list of aircraft P̂ , and we use the notation (·) to rep-
resent an ordered set. For each p ∈ P , let l�p� be the
distance of a shortest path from p∗ to p, and let '�p�
be an aircraft that precedes aircraft p on a shortest
path. ASH sequentially updates l and ' for each air-
craft adjacent to the aircraft in P̂ , and if an adjacent

aircraft p′ is not already in P̂ , ASH appends it to P̂ ;
that is, P̂ ← (P̂ � p′). If ASH discovers that p∗ is adja-
cent to an aircraft in P̂ , it identifies a directed cycle,
and it adds each aircraft on the cycle to P ′�p∗� and P ′.
Let parameter MINPLANES be the minimum num-
ber of aircraft in cycles that include aircraft p∗, and
so when ASH collects at least MINPLANES aircraft in
P ′�p∗�, it constructs a set of shortest paths and cycles
for another disrupted aircraft. Finally, ASH returns P ′

to ARO when the heuristic has found directed cycles
for each disrupted aircraft.
In §5, we show that by using ASH with

MINPLANES= 5, ARO solves 3,264 instances of a fleet
of 96 aircraft and 469 legs in 14 hours and 21 minutes,
which is less than 16 seconds per instance. However,
without ASH, ARO cannot solve instances for the
same fleet with a time horizon longer than two days.
Constructing the graph G is the computational bot-
tleneck of ASH. Determining wpipj

requires O�c	F �pi�pj �	�
computations, where c is a constant. Although the
complexity grows exponentially in 	F �pi� pj�	, it is
rarely very large in practice. An aircraft typically flies
three or four legs per day. Station disruptions usu-
ally last a few hours, and unscheduled maintenance
problems rarely require more than one day to repair.
In an unscheduled maintenance distribution provided
by a major domestic carrier, over 95% of the service
times were less than twelve hours, and 99.7% were
less than two days. Consequently, a decision maker
would probably choose the time horizon �t0�T � to
be less than two or three days, and so dynamically
constructing a subgraph of G is not computationally
intensive.

5. Computational Results
We validated ARO using a simulation of airline oper-
ations, SimAir, described in Rosenberger et al. (2002)
on the daily flight schedule of fleets from a major
domestic airline carrier shown in Table 4. We com-
pared ARO with a shortest cycle cancellation policy
(SCC) from Rosenberger et al. (2002). The simulation
time was 500 days of flight operations. On average,
hubs were closed for a few hours once per week,
and after 8% of arrivals, an unscheduled maintenance
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Table 4 Three Fleets from a Major
Domestic Carrier

Number of Number of
Fleet Planes Flights

1 96 469
2 70 302
3 32 139

delay of up to two days occurred. The delay thresh-
old that determined whether to use ARO was 30 min-
utes. ARO allowed delays of up to three hours in
the construction of the new routes, and the objec-
tive was to minimize cancellations. The unscheduled
maintenance distribution is from a major domestic
carrier. We found our results using a 500MHz Intel
Pentium III, and CPLEX 6.0 Callable Library solved
ARO’s integer program. In Table 5, CPU time is in
seconds; OT+ 15 is the on-time percentage; OT+60
is the percentage of legs arriving within 60 minutes
of their originally scheduled arrival time; lateness is
the average number of minutes a leg arrives after its
originally scheduled arrival time; can % is the per-
centage of legs that are cancelled; que % is the per-
centage of legs that were delayed on the runway of
the departure station or in the airspace of the arrival
station for longer than 25 minutes; miss pass % is
the percentage of passengers that have a disrupted
itinerary and must be rerouted; incon pass % is the
percentage of passengers that either have a disrupted
itinerary or arrived more than 30 minutes after the
originally scheduled arrival time of their itinerary;
ARO calls is the number of times SimAir uses ARO
during the 500 days; and swaps is the number of legs
that are flown by an aircraft different from their orig-
inally assigned aircraft. For each fleet, ARO signif-

Table 5 The Results of Simulating 500 Days Airline Operations Comparing Recovery Policies ARO and SCC

CPU Can Que Miss Incon ARO
Fleet Recovery Time OT+15 OT+60 Lateness % % Pass % Pass % Calls Swaps

1 SCC 543 68.44 85.64 16.753 8.41 1.11 21.89 33.44 0 0
1 ARO 51�643 69.25 87.43 18.558 4.77 1.19 17.24 31.55 3�264 120�244

2 SCC 405 67.65 85.93 16.534 8.28 1.18 19.14 30.73 0 0
2 ARO 23�627 68.88 88.06 17.117 4.93 1.28 14.52 27.88 2�206 80�130

3 SCC 103 67.30 85.51 15.817 8.96 0.83 15.91 27.72 0 0
3 ARO 6�463 69.14 88.74 17.412 4.47 1.00 10.32 24.47 1�252 38�254

icantly reduced cancellations and passenger disrup-
tions, while improving on-time performance. Because
ARO preferred delaying legs for up to one hour over
cancelling legs, the average lateness and the num-
ber of legs delayed more than 25 minutes either at
the runway or in the airspace was marginally greater
using ARO than SCC for Fleet 3. In addition to solv-
ing recovery instances for Fleet 1 at an average rate
less than 16 seconds per instance, ARO solved 2,206
and 1,252 instances at a rate less than 11 and 6 sec-
onds per instance for Fleets 2 and 3, respectively.
In several additional experiments, we calculated the

variance of the number of cancellations per day and
found 90% and 95% confidence intervals around the
percentage of cancelled flights. The magnitudes of
the 90% and 95% confidence intervals were less than
0.65% and 0.8%, respectively.
During the construction of new routes, ARO will

not delay a leg beyond a maximum delay tolerance. In
Table 6, we give simulated results for Fleet 3 with
different maximum delay tolerances, Max Delay, to
study the tradeoff between delays and cancellations.
ARO minimized total delay and cancellations by
equating a cancellation to a three-hour delay. Observe
that on-time performance is insensitive to the delay
tolerance, whereas average lateness and cancellation
percentage are affected.

6. An Alternate Objective
Function

In §5, we used on-time performance, lateness, cancel-
lations, legs delayed at the runway or in the air, and
passenger disruptions and inconvenience as measure-
ments to evaluate ARO and SCC in airline operations.
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Table 6 The Results of Simulating 500 Days Airline Operations for Fleet 3 Varying the Maximum Delay of
a Flight

Max Can Que Miss Incon ARO
Delay OT+15 OT+60 Lateness % % Pass % Pass % Calls Swaps

30 68.45 85.92 11.312 10.80 0.90 19�43 27.21 2,324 43,231
60 69.34 88.36 12.030 7.85 0.93 14�92 24.80 2,620 43,821

120 69.87 89.32 13.849 5.17 1.02 11�24 23.53 2,828 39,448
180 70.22 89.67 14.493 4.50 0.98 10�18 22.88 2,762 42,637
240 70.25 89.67 14.864 4.24 1.01 9�75 22.72 2,775 43,649
300 70.19 89.61 15.140 4.34 0.98 10�00 22.86 2,727 42,001
600 70.65 90.03 19.241 3.18 0.99 8�08 22.07 2,685 30,580

1�200 70.47 89.73 23.923 2.56 0.97 7�26 22.41 2,735 6,211

However, crew and passenger misconnections require
additional crew and passenger recovery solutions that
are often expensive to implement (Lettovský et al.
2000). Consequently, operations controllers will try to
find aircraft recovery solutions that avoid rerouting
crews and passengers. Here we provide a revised air-
craft recovery model that attempts to maintain crew
and passenger connections.
One difficulty in solving passenger and crew recov-

ery is that they can fly on other airline carriers, so
realistic crew and passenger recovery models include
every leg in all airline systems. Our revised approach
is to assign a cost of disruption to a trip, a crew pair-
ing or a passenger itinerary, and then minimize the
cost of the disrupted trips. For example, the cost of
a disrupted passenger itinerary might be the lost rev-
enue from rerouting the passengers, and the cost of
a disrupted crew pairing might be the expected cost
of rerouting the regular crew and reassigning another
regular or reserve crew to fly the pairing.
In the revised aircraft recovery model, we add

constraints to the aircraft recovery integer program
described by (2)–(7), and we change the objective
function (1). In order to minimize disrupted trips, we
include a constraint to calculate the delay of each
uncanceled leg. Let drf be the delay of leg f in
Route r . We include constraints∑

r�f
drf Xr =Df ∀ f ∈ F � (8)

where Df is the delay of leg f . Let Q be a set of flight
connections. For each q ∈Q, let f 1q be the first leg, let

f 2q be the second leg, let 0q be the scheduled slack,
time between the arrival of leg f 1q and the departure
of leg f 2q , and let

Oq =
{
1 if connection q is disrupted,

0 otherwise.

Let 1 be the minimum amount of time for a passen-
ger or crew to make a connection, and let 2f be the
maximum delay of a leg f . We add the following con-
straints:

Df 2q
−Df 1q

+ (
2f 1q + 1−0q

)
Oq ≥ 1−0q ∀ q ∈Q� (9)

Let V be the set of trips. For each trip v ∈ V , let
gv be the cost of disrupting v, let Q�v� be the set of
connections, let F �v� be the set of legs in v, and let

Zv =
{
1 if trip v is disrupted,

0 otherwise.

We add the following constraints:

Zv ≥ Oq ∀ q ∈Q�v��∀v ∈ V � (10)

Zv ≥ Kf ∀ f ∈ F �v��∀v ∈ V � (11)

Objective function (1) is replaced by one that min-
imizes the cost of disrupting the trips, which is
given by

min
∑
v∈V

gvZv� (12)

The advantage of our revised model is that it pro-
vides a framework to minimize the effect of disrup-
tions on crews and passengers. Unlike the model in
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Table 7 The Results of Simulating 500 Days Airline Operations

Can Que Miss Incon ARO
Fleet Obj OT+15 OT+60 Lateness % % Pass % Pass % Calls Swaps

1 Can 69.07 84.62 12.287 11.89 1.05 26.73 33.82 7,538 15,4138
1 Pax 68.14 84.15 12.788 12.23 1.10 25.91 33.53 7,719 15,1792
2 Can 68.34 85.79 12.547 10.44 1.14 22.24 30.21 4,563 99,354
2 Pax 67.38 85.36 13.126 10.72 1.19 20.86 29.71 4,792 10,2130
3 Can 68.10 85.29 12.535 11.16 0.86 19.74 27.76 2,338 40,895
3 Pax 67.50 85.22 12.528 11.22 0.90 18.55 27.25 2,370 44,762

Clarke (1997a, b), our model considers multiflight
passenger itineraries and regular crew pairings. A
controller must use it in addition to passenger and
crew recovery models because our revised model
does not reroute passengers and crews. For example,
our revised model could solve an aircraft recovery
subproblem in an integrated model such as the one
in Lettovský (1997).
Table 7 displays the comparison between minimiz-

ing cancellations and disrupted passenger itineraries
using the revised model; obj indicates whether ARO
minimized cancellations (can) or missed passenger
connections (pax). Observe that the initial model had
slightly better on-time performance, less average late-
ness, and fewer cancellations, whereas the revised
model had less passenger inconvenience and signifi-
cantly fewer passenger disruptions.

7. Conclusions and
Future Research

Automated recovery policies allow operations con-
trollers to make better recovery decisions. As
disruptions have become more frequent and severe,
airlines have begun to explore automated recovery,
and operations models are becoming more preva-
lent in the research literature. Network flow models
yield a solution in polynomial time, but they do not
include maintenance constraints and refueling. Set-
packing models optimize over a set of new routes,
and so column generation can check maintenance fea-
sibility. Although set-packing problems are NP-hard,
we overcome this difficultly by providing an aircraft
selection heuristic (ASH) that efficiently determines a

subset of aircraft to reroute. However, airlines are con-
sidering integrated recovery models (Lettovský 1997).
In an integrated recovery model, the master problem
determines which flight legs to delay and cancel, and
the subproblems reroute aircraft, crews, and passen-
gers. To implement ASH within an integrated recov-
ery model, the master problem, instead of the aircraft
subproblem, would use ASH. We could evaluate an
integrated recovery model using a stochastic model of
airline operations, as we examined our aircraft recov-
ery optimization model (ARO) in this paper.
The airline environment is constantly changing, and

an aircraft recovery, such as ARO, assists operations
controllers in overcoming adverse conditions. After a
controller recovers from a disruption, conditions, such
as weather, continue to change. A robust recovery pol-
icy that considers future conditions might provide a
better solution than one that assumes the new flight
schedule will operate as planned. For example, we
could model aircraft recovery as a two-stage stochas-
tic programming problem with a distribution for the
change in weather. We could solve the problem using
a Benders’ decomposition formulation in which the
master problem determines the new aircraft routes for
the first stage, and the subproblems reroute the air-
craft for different second stage scenarios.
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