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Ithough the airline industry has benefited from advancements made in computational and operational

research methods, most implementations arise from the frictionless environment of the planning stage.
Because 22% of all flights have been delayed and 3% have been cancelled in the United States since 2001,
schedule perturbations are inevitable. The complexity of the operational environment is exacerbated by the
need for obtaining a solution in as close to real-time as possible. Given some time horizon, the recovery process
seeks to repair the flight schedule, aircraft rotations, crew schedule, and passenger itineraries in a tractable
manner. Each component individually can be difficult to solve, so early research on irregular operations has
studied these problems in isolation, leading to a sequential process by which the recovery process is conducted.
Recent work has integrated a subset of these four components, usually abstracting from crew recovery. We
present an optimization-based approach to solve the fully integrated airline recovery problem. After our solution
methodology is presented, it is tested using data from an actual U.S. carrier with a dense hub-and-spoke
network using a single-day horizon. It is shown that in several instances an integrated solution is delivered in a
reasonable runtime. Moreover, we show the integrated approach can substantially improve the solution quality
over the incumbent sequential approach. To the best of our knowledge, we are the first to present computational

results on the fully integrated problem.
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Introduction

The airline industry has been one of the biggest
beneficiaries of advancements made in the applica-
tion of advanced optimization methodologies. Fleet
assignment, aircraft scheduling, crew scheduling, dy-
namic pricing and revenue management, and other
paradigms have received considerable attention in
both industry and academia throughout the past few
decades. Such decisions are made well in advance
of the day of operations in an environment ignoring
disruptions. However in practice, operations are rife
with frictions caused by disturbances such as incli-
mate weather or mechanical failure. In spite of all the
advances made at the planning level, there has been
relatively little work done at the operational level.

RIGHTS L

482

Even though problems at the operational phase are
similar to those of the planning phase, the former’s
problems are exacerbated by two things. The first
are additional operational complexities that arise. For
example, suppose an aircraft is approaching its des-
tination but is unable to land because of convective
weather. The aircraft may be placed into a holding
pattern, requiring additional flying time for the cock-
pit crew. By the time the aircraft lands, the crew
may not be legal to fly their subsequent leg because
they have exceeded their allowed flying time within
a 24-hour period, rendering a disruption to the subse-
quent legs. The second problem is that of timing. Most
airlines utilize an operations control center (OCC)
that provides a centralized decision making environ-
ment. Unlike the planning phase in which problems
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are sometimes made more than a year in advance
of operations, OCC coordinators are constrained to
making decisions in as close to real-time as possible.
Because decisions involving repairing the schedule,
aircraft, crew, and passengers are combinatorial in
nature, using an optimization-based approach may
not be tractable because of the complexity of solving
each of these operational problems. As a result, air-
lines do not generally rely on the use of mathematical
programming in the presence of a disruption to their
operations.

Given a disruption to the existing schedule, the air-
line is said to be in a recovery operation. Developing
an optimization model is naturally of interest to the
operations research (OR) practitioner, given the chal-
lenges posed. The immense nominal costs also make
it of interest to an airline. Although estimates vary,
these are generally considered to be tens of billions
of dollars annually in the United States alone (see
Bonnefoy 2008). Airline passengers also have a vested
interest in the problem because passenger delays have
become more problematic as the growth in air trans-
portation has outpaced that of capacity at major air-
ports. In some instances passenger delays have drawn
global attention as passengers have been subjected
to excessively long tarmac delays. These occurrences
have, in part, prompted the U.S. Congress to draft
a passengers’ bill of rights. Effective April 2010 the
U.S. Department of Transportation implemented a
fine of up to $27,500 per passenger for an airline
that exceeds a tarmac delay of three hours. Although
there have been some advancements made in apply-
ing mathematical programming to the operational
phase of airline scheduling, little advancements have
been implemented in practice. One possible expla-
nation is that the literature has considered only a
proper subset of decisions required during a recovery
period in order to deliver a solution in a timely man-
ner. Such a solution scheme may not be of use to an
OCC—for example, the recovered flight schedule may
not be feasible for existing crew schedules.

The principle goal of this paper is to define, for-
mulate, solve, and analyze a fully integrated recovery
problem in a manner that is amenable to the con-
straints imposed by an OCC. By heuristically reduc-
ing the set of disruptable resources that are to be
rescheduled, we propose an optimization module that
is to reassign the schedule, aircraft, crews, and pas-
sengers within some time horizon. We validate our
method by providing computational results using
data from a real U.S.-based airline. To the best of our
knowledge, we are the first to provide such results to
the fully integrated problem. In the context of solving
this problem, we also introduce some results that can
extend to other related problems within the industry.
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The remainder of the paper is organized as follows.
Section 1 provides a review of relevant work within
irregular airline operations. The problem and model
are formally defined in §2. Section 3 discusses how
the scope of the recovery operation is limited to make
the problem solvable. Our decomposition scheme is
outlined in §4. Computational results are shown in
§5 that validate our approach. Here we observe the
improvement the integrated approach yields relative
to several key performance metrics. Section 6 summa-
rizes our work and suggests related future work.

1. Literature Review

Although there has been relatively little prior work
for studying the airline integrated recovery problem,
various components within the problem have been
studied. We review some of the seminal earlier work.
Filar, Manyem, and White (2001) provide an excep-
tional survey of previous work. Clausen et al. (2010)
give a recent state-of-the-art overview of disruption
management of schedule, aircraft, crew, passenger,
and integrated recovery. An overview of the decision-
making environment at OCCs is given by Clarke
(1998b) and Kohl et al. (2007).

Early work on irregular operations focused on re-
pairing a schedule when one or more aircraft are
taken out of operation as studied by Teodorovic
and Guberinic (1984). Teodorovic and Stojkovié¢ (1990,
1995) developed a model that is to repair scheduling
decisions while minimizing the impact on passengers
and crew, respectively. Jarrah et al. (1993) introduce
two network models that form the basis for irregu-
lar operations control at United Airlines. They allow
the possibility of equipment swapping and allow the
use of spare aircraft. The first model seeks to out-
put a flight delay plan until the shortage of aircraft
is resolved by minimizing total disutility. The sec-
ond model achieves the same objective but considers
flight cancellations instead of delays. Clarke (1998a)
introduces the Airline Schedule Recovery Problem
(ASRP) that is strongly related to our model below.
The comprehensive framework that is proposed con-
siders flight delays and cancellations together. The
model considers additional constraints posed by air
traffic control (ATC). Three multicommodity network
flow models are presented in Thengvall, Yu, and
Bard (2001) for schedule recovery that follows a hub
closure. Each model considers flight cancellations,
delays, ferrying, and swaps. Their results show that
swapping opportunities have a substantial impact in
the solution quality.

Aircraft recovery seeks to schedule individual air-
craft in a way that must be maintenance feasible.
In addition to preserving maintenance schedules,
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a model proposed by Stojkovi¢ et al. (2002) also pre-
serves ground service, crew connections, and passen-
ger connections. The dual to their proposed model
is a network model that allows for computation in
near real-time. Rosenberger, Johnson, and Nemhauser
(2003) develop a set packing model that assigns routes
to aircraft by minimizing an objective that comprises
both the assignment and cancellation costs. Mainte-
nance feasibility is preserved by enumerating all rout-
ings involving a maintenance activity a priori.

To our knowledge Wei, Yu, and Song (1997) were
the first to study crew recovery through a compre-
hensive multicommodity network flow framework.
A heuristic-based search algorithm is used within
the context of a depth-first search branch-and-bound
algorithm that seeks to repair the original crew pair-
ings. Stojkovi¢, Soumis, and Desrosiers (1998) pro-
pose a model that, given a fixed flight schedule, seeks
to output a set of modified crew pairings at min-
imum cost through a set partitioning problem that
uses column generation throughout the branch-and-
bound tree in a suitable runtime. Our work is strongly
related to Lettovsky, Johnson, and Nemhauser (2000).
Given the set of cancelled flights, they also assign
crew to modified pairings at minimum cost. They
allow crews to deadhead either within the modified
pairing or back to their crew base. They present effi-
cient preprocessing techniques to identify the sub-
set of the schedule to be disruptable. Stojkovi¢ and
Soumis (2001) consider a one-day crew recovery
model that allows for scheduling changes that keep
aircraft routings fixed. Their problem is formulated as
an integer nonlinear multicommodity network flow
problem that is solved by Dantzig-Wolfe decomposi-
tion with branch-and-bound.

Passenger recovery was studied in Bratu and
Barnhart (2006), who suggest a framework that can
reduce passenger disruptions while holding down
other scheduling costs in the presence of a disruption.
Their model allows flight delays and cancellations
and assigns reserve crew and spare aircraft to accom-
modate the new schedule. Zhang and Hansen (2008)
propose integrating other modes of transportation to
accommodate disrupted passengers. Such intermodal
connections are often preferred particularly when the
destination is nearby the disrupted station within a
hub-and-spoke network.

An area closely related to recovery is schedule
robustness. The central idea is to design a schedule
that is able to be recovered more efficiently in the
presence of irregularity. Robust scheduling was stud-
ied extensively in Smith (2004), Rosenberger, Johnson,
and Nemhauser (2004), and Smith and Johnson (2006).
Crew robustness was also studied by Klabjan et al.
(2002), Shebalov and Klabjan (2006), Ball et al. (2007),
and Gao, Johnson, and Smith (2009). The impact of
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schedule robustness to passenger recovery can be
seen in Lan, Clarke, and Barnhart (2006).

A number of studies aim to partially integrate
operations under irregularity. The 2009 ROADEF
challenge (see Palpant et al. 2009) introduced a com-
petition that sought to deliver a recovery solution
that was to integrate the schedule, aircraft, and pas-
sengers. Gabteni (2009) presents an overview of the
proposed methodologies. The winning team, seen in
Bisaillon et al. (2010), employs a large-scale neigh-
borhood search heuristic that iteratively constructs,
repairs, and improves solutions and that incorporates
randomness to diversify the search procedure.

Handling aircraft and crew in concert is an ardu-
ous task, which explains why previous computational
studies have ignored crew considerations. There have
been some studies that include a fully integrated
airline recovery framework, although these tend to
be only formulations. Two such proposals for inte-
grated recovery are seen in doctoral dissertations by
Lettovsky (1997) and Gao (2007). The formulation
given by the former is closely related to our work. He
presented a fully integrated model that decomposes
into a structure suitable for Benders decomposition.
The linking variables are fleeting decisions to flight
legs in which are passed to subproblems represented
by repairing aircraft rotations, crew pairings, and pas-
senger itineraries.

2. The Airline Integrated

Recovery Problem
We formally define the airline recovery problem to com-
prise the following four problems:

¢ The schedule recovery problem seeks to fly, delay,
cancel, or divert flights from their original sched-
ule. We call the solution to this problem the repaired
schedule.

* The aircraft recovery problem assigns individual
aircraft routings to accommodate the repaired sched-
ule that are feasible for the constraints imposed by
maintenance requirements.

* The crew recovery problem assigns individual crew
members to flights according to the repaired schedule,
to satisfy the complex legality requirements.

* The passenger recovery problem reassigns disrupted
passengers to new itineraries that deliver them to
their destination.

Given a disruption, we define the time window
to be an exogenous interval 7 := [t, ] in which
flights, aircraft rotations, crew schedules, and passen-
ger itineraries are allowed to be modified. Each com-
ponent may have a different interval, although we
restrict our analysis to the same horizon. The require-
ment is that all components be back on their orig-
inal (undisrupted) schedule by the end of the time
window .
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2.1. Schedule Recovery

The schedule recovery model (SRM) returns re-
timing and flight cancellation decisions. Our model is
closely related to Clarke (1998a) in that we consider
additional constraints imposed by air traffic control
systems.

Instead of a leg-based model, we utilize flight
strings, a concept introduced by Barnhart et al. (1998).
A flight string (which we refer to as string) is a
sequence of flights, with timing decisions, to be oper-
ated by the same aircraft. The same sequence of flights
might be present in multiple strings, although each
sequence must have a unique set of retiming deci-
sions. A string-based model has a number of ad-
vantages. Although the number of strings naturally
grows significantly with respect to the number of
flights, efficient column generation techniques can be
employed. Strings are also able to capture network
effects that individual flight decisions do not. Also,
ground arcs need not formally be defined in the
underlying time-space network. The biggest advan-
tage is that integer solutions to the aircraft recovery
problem (discussed in §2.2) are immediately obtained
from the LP-relaxation.

2.1.1. Sets.

F: set of all flight legs;

E: set of equipment types (fleets);

S: set of flight strings;

A: set of all airports;

A*": set of arrival slot capacities specified by an
inbound station, arrival limit, and time interval,;

A%P: get of departure slot capacities specified by an
outbound station, departure limit, and time interval;

G: set of gate restrictions specified by a station, gate
limit, and time interval,

I(a, t°, t7): set of strings that are inbound to station
a between t* and t7;

O(a, t°, t%): set of strings that are outbound from
station a between t* and 1%

W (a, t*, t"): set of strings that occupy a gate at sta-
tion a between t* and 1%

Fstrategic; get of strategic flights that are prohibited
from cancellation;

Fmarket; get of flights that have exogenous market
requirements set by the airline that require a mini-
mum number of flights or seats to be offered in a
given segment.

Downloaded from informs.org by [211.65.109.60] on 05 May 2016, at 05:25 . For personal use only, all rights reserved.

2.1.2. Data.

cos': cost of assigning equipment type e € E to
string s € S;

c}ancel: cost of canceling flight f € F;

CAP,: capacity of equipment type e € E;

1 minimum number of seats required by flight
f c Fmarket.
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2.1.3. Decision Variables.
1 if equipment type e € E is

X, = assigned to string s € S,

0 otherwise,

Kf=

1 if flight f € F is cancelled,
0 otherwise.

2.1.4. SRM Formulation. The SRM formulation is
given as follows:

min ZZC?fignxm +> C}ancel Ky 1)
ecEseS feF

st. > x, +k;=1 VfeF, ()
ecEseS:
sof

Z er,S =1 Vf = Fstrategic, (3)
ecEseS:
sof

YO m.=mt Ve, F)eAm, @)

e€Esel(a, 17, 17)

> Y x . <ni

e€EscO(a, 17, 17) 4 _ d
V(a,n“F, t*,t") e A°P, (5)

Z Z x6ls Sngates

ecEseW(a, t7, %)

Y (a,n8, 17,1 e G, (6)
Z Z CAPE xe,s > n;eats Vf e Fmarket, (7)

ecEs:ssf
x,,€{0,1} VeeE,VseS,
k;€{0,1) VfeF.

The objective (1) is to minimize the aggregate cost
of string assignment (including retiming decisions)
and flight cancellations. Flight assignment constraints,
as seen in (2), either require a flight to be contained
in exactly one string or cancelled. To prohibit strate-
gic flights from being cancelled, constraints of the
form (3) are added. Arrival and departure capaci-
ties at certain airports at given time intervals are not
to be exceeded, as captured in (4) and (5), respec-
tively. Constraints (6) ensures the number of air-
craft on the ground does not exceed the number of
gates available at certain stations and times. Mar-
ket requirements are captured in (7); they ensure
that a minimum number of seats is operated on cer-
tain flights. There are also other constraints that pro-
hibit certain resources from being assigned to certain
flights that we do not explicitly include for brevity.
For instance, a curfew constraint ensures no flight
arrives or departs within a curfew period. Other
such constraints include weather restrictions and con-
straints prohibiting certain fleet types from operating
at specific stations that cannot accommodate that type
of aircraft.
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2.2. Aircraft Recovery

The aircraft recovery model (ARM) assigns individual
tail numbers to strings while meeting maintenance
and other aircraft requirements. The ARM is solved
for each equipment type e € E.

2.2.1. Sets.

AC(e): set of aircraft of equipment type e € E;

Amaint(¢): set of maintenance stations capable of
maintenance of equipment type e € E;

H(e): set of aircraft of type e € E that requires main-
tenance activity within the time window J;

S,(a, tyn, T): set of eligible strings to be flown by
aircraft n € AC(e) that visit station a € A™i(e) for
at least f_;, units of time within subinterval T C 7.

2.2.2. Data.
cy . cost of assigning tail n € AC(e) to string s € S.

2.2.3. Decision Variables.

" 1 if aircraft n € AC(e) is assigned to string s,

¢S 0 otherwise.

2.24. ARM Formulation. Given equipment type
e € E, the Aircraft Recovery Model, or ARM(e) is

min ¥ Yl ®
neAC(e) s€S

st. Y xl =x,, VseS, )
neAC(e)
Y oxl =1 VneAC(e), (10)

seS
n
> xl,=1 V(n,a,t
5€5,(a, tyin, T)

x, ,€{0,1} VseS,¥neAC(e). (12)

TYeH(e), (11)

min /7

The objective (8) minimizes the cost associated
with aircraft assignment. The cost can be thought of
penalties or bonuses. For instance, a penalty may be
imposed for any deviation from the original routing.
The string cover constraints (9) assure that each string
chosen from the SRM is assigned to some eligible air-
craft. Constraints (10) ensure each aircraft is assigned
to precisely one string. In the event that the required
initial and end stations coincide for a particular air-
craft, we define a null string to be one with no flights,
so the aircraft stays on the ground. Maintenance cover
constraints are seen in (11). This simply ensures that
at least one maintenance opportunity is built in for
all tail numbers requiring maintenance. The inputs
to this class of constraints includes the eligible sta-
tion(s), latest possible time for service, and minimum
time duration necessary to perform the maintenance
event. Different types of maintenance checks can be
incorporated into these constraints with the given
parameters required. The specific maintenance plan-
ning of choosing which event opportunities are to be
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utilized can be done post-optimization. Other con-
straints we include but do not explicitly formulate are
user-dependent constraints prohibiting certain aircraft
from operating at some airports and similar opera-
tional restrictions.

2.3. Crew Recovery

Crew members are assigned to pairings, which com-
prise duties that contain specific flight assignments
over a period of time. Each consecutive duty assign-
ment must observe a rigid set of legality rules as man-
dated by the Federal Aviation Administration (FAA)
and possible additional airline and union require-
ments. A duty typically represents a single day of fly-
ing, and the pairing usually spans between two and
four duties. A roster period consists of a number of
pairings over a period of time, typically about one
month. If a specific crew has a pairing that becomes
disrupted, the pairing is said to be broken. A broken
pairing may be augmented during the period over-
lapping with the time window J so as to deliver
the crew members to the station they are required
to be at immediately outside of 7. All other compo-
nents within the crew schedule outside of J are to
be preserved. We ensure the repaired pairing is legal
for the entire duration of the original pairing for the
crew, although it may be not be the case for the roster
period; in this case, the roster would have to be fixed
between the end of the pairing and end of the roster.

The crew recovery model (CRM) seeks to repair
disruptable crew pairings at minimum cost. Like the
ARM, the CRM is solved for each equipment type
corresponding to crew rating. For brevity within the
context of CRM, a pairing really means “the broken
component of the original crew pairing.”

Crew deadheading is an important component to
the crew recovery process. Formally, a deadhead occurs
when a crew member is transported on a flight but
does not operate the aircraft. Deadheading occurs
during the recovery process when a schedule imbal-
ance creates a shortage or surplus of crew members
at a given station. There are two classes of deadheads.
The first is deadheading within a pairing, i.e., when
a crew member deadheads to some station to then
operate a subsequent flight. The second class of dead-
heading is when crew members deadhead home to
their crew base, ending their current pairing. This
is common when stringent legality requirements are
nearly exhausted for a crew and no pairing can be
assigned during the time window. Airlines typically
have vastly different policies on deadheading crew
members. Our module requires penalties for each
class of deadheads that occurs.

2.3.1. Sets.

K: set of all available crew members;

Py: set of eligible pairings for crew k € K;
P: set of all pairings, i.e., P = Uik Pi-
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A pairing p € P, is eligible for crew k € K if

(i) p begins at the station where crew k is at the
beginning t of the time window J;

(ii) p ends at the station where crew k is required
to be at the end t of the time window J; and

(iii) all flight, duty, and pairing legality require-
ments are satisfied.

2.3.2. Data.
C;S;‘gn: cost of assigning crew k € K to pairing p € P;;
d™™"8: cost of deadheading a crew on flight f € F;

dpae: cost of deadheading crew k € K back to base.
2.3.3. Decision Variables.

|1 if crew k € K is assigned to pairing p € P,
Yep = 0 otherwise,

_ |1 if crew k € K is to deadhead back to base,
*“ o otherwise,

sy = the number of surplus crew on flight, f € F
(deadheads within pairing).

2.34. CRM Formulation. The CRM model we
consider for equipment type ¢ € E , CRM(e), is as
follows:

min Z Z CZ,S;ignyk,p + Z d}’airingsf + Z dgase v, (13)

keK pePy feF keK
s.t. Zzyk,P_sf:]'_Kf erF, (14:)
keK pePy:
p>f
Sy, tr=1 Vkek, (15)
peby

Yi,p € {0,1} VkeK,VpeP,
v, €{0,1} VkeKk,
speZ, VfeF.

The objective (13) seeks to minimize total crew cost;
(14) ensures that some crew operates each flight that
is not cancelled. If s; > 0, the flight is to contain at
least one crew that is to deadhead on a pairing. Con-
straints (15) assigns each crew to either some eligible
pairing or to their home crew base.

2.4. Passenger Recovery
There are two components to the passenger recovery
process. The first is an iterative module by which the
costs from aggregate itinerary delays are minimized
by integration with the SRM, ARM, and CRM. The
second problem takes the eligible set of itineraries
from the first problem and assigns itineraries to pas-
senger groups to minimize the actual cost associated
with passenger delay.

Each passenger is defined as a four-tuple con-
sisting of origin, departure time at origin, destina-
tion, and scheduled time of arrival at destination.
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All possible eligible itineraries are generated a pri-
ori from the original flight schedule. Some itineraries
are constructed even though they may be infeasible
from the initial schedule because they may become
feasible with delays. For example, consider a passen-
ger scheduled to depart at 8:00. If there is a flight
between the same origin and destination scheduled
to depart at 7:00, then that flight might be able to be
used in the recovery solution if it experiences a delay
of at least one hour. If it does not, then constraints
will prohibit the use of that itinerary. Our model reas-
signs disrupted passengers to new itineraries assum-
ing homogeneous passengers. In practice a more
granular version of this is employed that distin-
guishes each individual passenger based on certain
attributes like fare class or frequent flier status. Our
framework chooses the specific itineraries that are to
be used determining the flow of passengers to be
assigned to each itinerary only and not which spe-
cific passengers are to be assigned (this could be done
post-processing).

2.4.1. Sets.

OD: set of disrupted passengers classified by an
origin-destination (OD) pair;

I': set of all passenger itineraries;

I'; € I': set of all itineraries eligible to assign passen-
ger i € OD;

Iultifit € To: set of multiflight itineraries available to
passenger i € OD.

2.4.2. Decision Variables.
z; ,- number of passengers from i € OD to assign
to itinerary y € I';

s;: number of passengers from i € OD that are not
assigned to an itinerary;

d; ,+ hourly delay if passenger i € OD is assigned to
itinerary y e I.

2.4.3. Data.

c?,eiay: hourly cost of passenger delay associated
with assigning i € OD to itinerary y e I[';

;""" cost of being unable to assign a passenger
to an itinerary;

w; . weight of assigning i € OD to itinerary y € I;
in the aggregate delay cost;
nA%: number of passengers for i € OD;
CAP,: capacity of equipment type e € E;
f(7y): initial flight in itinerary y e I';

f(v): final flight in itinerary y € I’;
t7": actual time of arrival for flight f € F;

t;leP: actual time of departure for flight f € F;

t7™: scheduled time of departure at origin for
ieOD;

t5™8: scheduled time of arrival at destination for
1€ OD;

teonnect: minimum  passenger connection time for
multiflight itineraries.
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2.4.4. Itinerary Recovery Model. As previously
discussed, all eligible itineraries are initially con-
structed given the original flight schedule. Several of
the itineraries will be ineligible with different solu-
tions provided by the SRM. The itinerary recov-
ery model (IRM) seeks to output the set of eligible
itineraries for each OD such that the aggregate delay
costs are minimized subject to ensuring a feasible set
of passenger itinerary assignments. The IRM is for-
mulated as follows.

min Z chelay . 1y+ Z una551gns (16)
ieODyel; ieOD
st. Y > z,<) > x CAP, VfeF, (17)
ieODyelj: ecEseS:
yaof sf
Yoz ,+s,=nP” VieOD, (18)
veli
8iy =20 D X oty — ™ VieOD, Vyel}, (19)
ecE seS:
s3f(y)

Zi,y <n;(1—ky)

VfeF,V(i,y)eODxI;: y>f, (20)
Z Z tdep)xa s— STD Mz y(l vz y)
ecE S?S
53
- VieOD,Vyel;, (21)
z; y<M; ,v;, VieOD,Vyel,, (22)
dej arr
DIPBAEIED DY
ecEseS: ecEseS:
ssfj s3f;

= b =M, (1-w;,,)
VieOD,V(f, f) eT™" ", (23)

z,, <M/ w,, VieOD,Vyel™" (24)
(24,4854, 0i 4, W; ) EZxRx (0,1} x {0, 1},
VieOD,Vyel},

s;eZ YieOD.

The objective (16) seeks to minimize the total
weighted nominal delay cost of all itineraries and
unassigned passengers. The weights can be either
unit-valued or reflect the share of OD passengers
present in the disruption. Constraints (17) prohibits
the spilling of passengers. For each OD, (18) either
assigns passengers to a feasible itinerary or strands
them with no itinerary being assigned. If a passen-
ger cannot be assigned to an itinerary, he or she may
overnight at a connection point, be placed on another
airline, or have the itinerary delayed outside of 7.
Constraints (19) tracks the delay of each passenger-
itinerary pair where the itinerary delay is the differ-
ence between the actual arrival time of the last flight
in the itinerary and the scheduled time of arrival to
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the passenger’s destination. Constraint (20) ensures
no passenger is assigned to an itinerary that con-
tains a cancelled flight (where n; is an upper bound
for z; ). Recall that all eligible itineraries are over-
built a priori in which some itineraries are infeasi-
ble with respect to the original schedule but may
become eligible through delays. The next four con-
straints are logical constraints that ensure only legal
itineraries are considered given the solution from the
SRM. Inequalities (21) and (22) prohibit assigning any
itineraries to passengers in which the initial flight
in the itinerary departs prior to the passenger ready
time. For all i€ OD and y €I}, M, , = £™ is chosen
as a valid upper bound. Given the solution from the
SRM, passenger connection times are observed. If the
connection time does not exceed the minimum neces-
sary connection time !, then no passengers can
be assigned to that itinerary. This is reflected in (23)
and (24) where M; , > 0 is appropriately chosen (for
example, maximum possible connection time).

2.4.5. Passenger Reaccommodation Model. Once
the set of flight strings has been found that induces
the minimal aggregate passenger delay, the passenger
reaccommodation model (PRM) is solved. The PRM
allocates passengers to the given set of itineraries to
minimize the total assignment cost.

For all i € OD let I denote the set of eligible
itineraries for the given OD induced by the optimal
SRM solution. The PRM is formulated as

min Z Z delay6>‘< l’ ) + Z C}massignsi (25)
i€OD yel} ieOD
st. Y Y z,<y > x,  CAP, VfeF, (26)
i€OD yel}: ecE seS:
yaf sof
Yz, ,=n?® VieOD, (27)
vely
z;,€Z VieOD,Vyel},
s;eZ VieOD.

Note the summations in (26) and (27) differ from
(17) and (18) in that the former are taken over the
index sets I'7. Although the objective function of the
IRM does not depend on z; ., constraints (17) and (18)
are included in the IRM to ensure a feasible solution
in the PRM. Moreover, the cost coefficients c; elay are
chosen to be identical for both the IRM and PRM to
measure the cost associated with passenger delay.

The two-stage approach to passenger recovery can
be combined into a single step in which reaccom-
modation is done explicitly. However, our approach
is advantageous in two ways. Considerable compu-
tational effort is required to model each passenger
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individually; the number of cut coefficients gener-
ated by the Benders cut has introduced a vast com-
plexity to the master problem, which is solved as a
mixed-integer programming problem. Secondly, our
approach only requires a single call to the itinerary
generator a priori as opposed to building new itin-
eraries every time the master problem is solved.

3. Limiting the Scope of Recovery

The size and complexity of the integrated recovery
problem outlined above most likely precludes the
delivery of a globally optimal solution. In order to
tractably solve the problem for reasonably large sce-
narios, careful consideration must be placed on how
to limit the size or scope of the problem.

A flight is said to be disrupted if one of its resources
precludes the flight from operating as scheduled.
Such resources include the arrival or departure
airport, aircraft, or assigned crew members. Flight dis-
ruptions may be exogenous or endogenous. An exam-
ple of an exogenous disruption is the closure of an
airport for a specific period of time, in which all flight
activity to or from the airport within that time interval
must be altered. However, system-wide disruptions
can be mitigated by endogenous flight disruptions.
An example of an endogenous flight disruption is
shown in Figure 1 on a simple flight network consist-
ing of three flights: 101 from MIA to ATL, 102 from
ATL to ORD, and 114 from CLT to ATL. The thick
black segment at ATL represents a closure that forces
the (exogenous) disruption to flight 101. Although
flight 102 is unaffected by the disruption, it may
be advantageous to (endogenously) delay the flight
in order to accommodate connecting passengers. Of
course this illustration is simplistic, but it shows the
combinatorial nature of the problem.

Flights that are candidates for disruptions are said
to be disruptable. For example, consider flight 114 from
Figure 1 that is unaffected by the disruption directly.
It would be plausible to not consider that flight as a
candidate for disruption. Although simple to identify

|
| CLT
| &4

i - MIA
|

o —— ATL

|
|
| ORD
|

Figure 1 Exogenous vs. Endogenous Flight Disruptions
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on a three-flight example, the process of identifying
which subset of flights to be considered disruptable
poses a considerable challenge.

We now discuss the procedure by which we iden-
tify all disruptable flights. Initially the disruptable
flight set includes those flights that are directly af-
fected by a resource at the airport. The set is then
expanded to consider aircraft, crews, and passengers.

3.1. Limiting Flights

The disruptable flight set is instantiated with all
exogenous flight disruptions that contain a resource
that forces a delay or cancellation.

Flights from Disrupted Routings. A disruptable
aircraft exists if its scheduled routing contains a dis-
ruptable flight. Suppose k, flights are scheduled for
disruptable aircraft n within the time window I
denoted by f, fo,..., fi - Let f; denote the earliest
flight from the disruptable routing present in the dis-
ruptable flight set. Denote F, ={f;, fi;1,--., fi } as all
subsequent flights within J that were scheduled to
be operated by aircraft n. Because of delay propaga-
tion, a disruption to flight f; may cause disruption to
the subsequent flights from F,. Thus the disruptable
flight set is appended with all flights from F,. Repeat-
ing this procedure for all disruptable routings gives
the updated disruptable flight set.

Flights from Disrupted Crew. Similar to that of
aircraft, a disruptable crew exists if a crew is scheduled
to fly a disruptable flight within its pairing. The dis-
ruptable flight set is appended in a similar fashion
to that of aircraft. A list of flights is extracted that
each crew member is scheduled to fly in the disrup-
tion period. If a disruptable flight is present, then that
flight and all subsequent flights within the scheduled
pairing within the disruption period are added to the
flight set.

The new flights that have been added from the crew
schedules might be operated by aircraft not previ-
ously identified as disruptable. In this case, the new
aircraft are appended to the disruptable set of aircraft.

Flights from Tight Passenger Connections. We
take a passenger-centric approach to integrated recov-
ery, and thus minimizing passenger delay is central to
our study. We further modify the disruptable flight set
by considering additional candidate flights that are
identified for abating passenger delay through pre-
processing. Consider a passenger originating in MIA
whose destination is ORD, seen in Figure 2. Note that
the connection between flights 101 and 102 appears
to be tight. Even a moderate disruption in flight 101
is likely to break the connection for such passengers.
Additional flight candidates are introduced for such
tight connections through a simple rule. If a nondis-
ruptable flight has the same origin and destination
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[ ] Additional flight threshold

Figure 2 Identifying Passenger-Friendly Flights

from a flight contained in a tight connecting itinerary,
then that flight is introduced as disruptable if the
departure times are within some tolerance thresh-
old specified by the airline. Figure 2 illustrates this
concept of augmenting the disruptable flight set to
mitigate passenger delay. There are two other nondis-
ruptable flights from ATL to ORD. Flight 100 departs
from ATL relatively near that of flight 102 and is
added to the disruptable flight set assuming the dif-
ference is within the threshold. Naturally all passen-
gers on flight 100 are then considered in our model
because the flight becomes disruptable. If the depar-
ture of flight 110 is too late (i.e., outside the threshold),
it remains nondisruptable.

These new flights will have new aircraft and new
crew members associated with them. As was done
with adding new flights from crew schedules, we con-
sider the single-flight entities only and ensure both
the aircraft and crew members are eligible to operate
the next flight in their respective schedules.

3.2. Retiming Flights

Initial work on airline recovery modeled flight delays
by making copies of each flight arc that departed
at uniform intervals (see Clarke 1998a; Gao 2007).
Although the uniform flight copy approach is sim-
ple and intuitive, generating strings over copies of
flights becomes extraordinarily large and complex.
We instead model delays through an event-driven
approach. The idea is that events like arrivals and
times associated with constraints from the SRM give
more relevant delay decisions than arbitrary depar-
ture times from uniform flight copies.

Given a maximum allowable delay period d,,,
a timeline is created for each flight from 0 to d,,
representing the given flight delay. Note that in the
SRM some constraints are a function of time (see, for
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Table 1 An Example of Time-Dependent Constraints

Directly affected

Event Time Station Constraint by disruption?
1 0930-1030 ATL Flow rate reduction Yes
2 0930-1000 MIA Gate restriction No
3 1130-1200 ATL Slot restriction No
4 1200-1245 MIA Gate restriction No

example, constraints (4) through (6)). Formally these
are referred to as time-dependent constraints. Table 1
gives an example of a set of time-dependent con-
straints present in the flight network from Figure 2.

The flight departure interval is partitioned into
k>1 disjoint subintervals from the set of time-
dependent constraints that give a maximum of k 41
departure options. If a flight f is present in any of
the time-dependent constraints, then a new subinter-
val is created, representing a new candidate depar-
ture time. Each string must then have no more than
one departure from each subinterval. Strings are gen-
erated through the augmented flight network, defined
to be the original flight network whose number of
copies (i.e., delay options) corresponds to the number
of subintervals from the delay interval.

Figure 3 shows a simple two-flight example of how
delay options are generated from these events using
a maximum allowable delay (d,,,,) of two hours. The
shaded regions in Figure 3(a) represent the time-
dependent constraints as given in Table 1. Figure 3(b)
shows how the flight network is augmented to accom-
modate different departure times. Both flights are par-
titioned into three subintervals giving a maximum of
four departure options for each flight.

(a) Scheduled flights and time-dependent constraints
1200 1245

0815 ( 3 [ } MIA

L)
fit 101°\LI80 1000 1130 1200
( Al 1100 ( I ATL
L 1000 cJ
0930 1030
fit 102

RD
1220 ©
(b) Augmenting the flight network
flt 101
flt 102

I I I I | |

I I I I I I
0800 0900 1000 1100 1200 1300

Figure 3 Modeling Event-Driven Flight Delays
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The idea of event-driven delays is that the strings
present in the augmented flight network are likely
to dominate most strings created from uniform flight
copies while generating fewer flight strings. From Fig-
ure 3 there are a maximum of 4% possible strings from
this approach. If uniform flight copies were instead
employed at a coarse discretization of 15 minutes,
eight delay options would arise in addition to the
original flight departure time. Thus, nine copies of the
same flight are represented for two flights, giving a
maximum of 9% possible strings for just this trivial
two-flight illustration. Another problem with uniform
flight copies is that several strings are likely to be
present in the same set of time-dependent constraints
and therefore exhibit duplicate columns in the SRM
formulation.

4. Solution Methodology

Even by limiting the scope of the problem to make
it computationally tractable, the problem is likely too
large and complex to return a globally optimal solu-
tion for most reasonable disruption scenarios. There
is an inherent tradeoff between solution quality and
runtime. A possible method might be to develop a
recovery scheme in a two-phased approach that first
seeks to recover the schedule, then to recover the
other three components taking the repaired schedule
as given. There are a number of problems associated
with this scheme, however tractable it seems. Con-
flicting objectives almost certainly exist between the
schedule, crew costs, and passenger delays. Passing a
single feasible schedule is too restrictive with respect
to each of the second-stage problems. We argue that
if this were a plausible recovery method in prac-
tice, virtually every airline OCC would have already
implemented a variation of such a solution strategy.
Instead, airlines often try to find a single feasible
schedule manually. The other extreme would be to
deliver a fully integrated solution that is globally opti-
mal with respect to each of the four components.
And although an integrated recovery framework is
naturally desirable, the size and complexity may pre-
clude such a mechanism to be implemented in prac-
tice. Therefore a balance between these two extremes
must be reached with the goal of delivering an inte-
grated solution.

Our approach is to return a solution that is globally
optimal with respect to aggregate passenger delay,
meaning passenger assignments are globally optimal
over all itineraries and all flight strings. We emphasize
that optimality is in accordance to our model over
the reduced problem whose scope has been limited
as discussed in the preceding section. Although this
is clearly desirable for crew scheduling decisions as
well, the crew recovery component is the bottleneck
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of the process, and the number of repaired pairings
can be so large that optimizing over all pairings and
strings is unlikely to solve in an efficient manner. Two
tactics are employed to ameliorate the large cost asso-
ciated with crew recovery:

1. We do not require the delivered solution to be
globally optimal over all strings and pairings. New
pairings are priced out until the master solution
(x5, k}) is globally optimal for the IRM and feasible
for the ARM and CRM. When this termination cri-
terion is reached, no further pairings are priced out
(see Figure 4). Thus our approach is considered to be
passenger-friendly with crew considerations.

2. Multiple cockpit crew members are required for
each flight, usually two including a captain and a first
officer. Even though the crew members may have dif-
ferent pairings, we assume the pair of crew members
assigned at the beginning of the time window stay
fixed through the time window. We solve the CRM
only for the captain and check the legality of the first
officer in the post-processing stage. If the assigned
pairing violates some legality restriction, a swap is
conducted or a reserve crew is assigned if possible.

Other than being computationally tractable for a
single-day horizon, returning a globally optimal pas-
senger solution has another advantage: it is more
satisfying to passengers whose aggregate delay is at
a minimum. Recent news headlines have reported
about excessive passenger delays inducing a “passen-
ger revolt” and a number of variants for a passenger
bill of rights have been proposed in Congress. Effec-
tive April 2010 the U.S. Department of Transportation
enacted a rule whereby airlines would be forced to
pay up to $27,500 for each passenger experiencing a
tarmac delay in excess of three hours (U.S. Depart-
ment of Transportation 49 U.S.C. 40113).

4.1. Decomposition

Because scheduling decisions affect repaired aircraft
rotations, crew schedules, and passenger itineraries,
employing a Benders decomposition scheme would
be natural to decompose the problem. The master
problem is the SRM with linking variables {x, .}, {x}
that are passed into the subsequent subproblems:
ARM, CRM, and IRM.

Although the three subproblems are independent
of each other, they are solved sequentially. First, the
SRM and IRM iterate until the aggregate passenger
delay cost is minimal. The ARM is then solved. If the
ARM is infeasible, a Benders feasibility cut is added to
the SRM. Otherwise, the CRM is then solved. Again,
a feasibility cut is added if the CRM is infeasible.
Otherwise, a tentative solution is found. If the opti-
mality gap between the current CRM iterate is within
some tolerance level specified by the user, a solu-
tion to the iterative scheme is given. Otherwise, new
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Benders optimality cut is returned to the SRM. The
problem structure is amenable to parallelization, but
we employ the sequential implementation.

There are five classes of Benders cuts that are
passed into the master problem. Only the relaxation of
each of the three subproblems is solved so as to obtain
coefficients of the Benders cuts. The master problem
is first solved as an LP-relaxation, and new strings are
generated based on the corresponding dual extreme
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is attained. Obtaining integer solutions for the three
subproblems is further discussed in §4.4.

The five families of Benders cuts that are included
in the master problem are

Y3 aiMy, <™, (28)
ecE seS
Y (1— k)T 4 Y pERM <, (29)
feF keK
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(A —k)m™M 4 Y peM < SR, (30)
feF keK

22 mMCAPx, o+ 3 3D X iy Xe,s

ecE feFsof i€PAX vel} ecE 57 (y)
+ 30 2 ™M1 — k)
icOD yel; fey
IRM dep
2z o(z x )
ieOD yel; ecE seS:
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+T T (ST - )
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ecE feF saf i€PAX yel ecE g5 f(y)
IRM

+ > > va n(1—ky)

icOD yel; fey

IRM dep

+ 2 2605 (Z > tfmxe,s)

ieOD yel; ecE seS:

53 f(v)
IRM dep

+ > > Ty <Zthj xels—ZZtafrxels)

i€PAX yepmultifl ecEs>f; ecEssf;

< nIRM + 77_(I)RM‘ (32)

The superscripts in (28)—(32) denote the given sub-
problem, 7™ and 7™ are constants that depends
on the dual variables from the right-hand side of con-
straints that do not depend on master variables from
the ARM and IRM, respectively. In addition, n“* and
™M are new decision variables in the master problem
corresponding to the optimal objectives in the CRM
and IRM, respectively. The cuts are ARM feasibility,
CRM feasibility, CRM optimality, IRM feasibility, and
IRM optimality, respectively. We model the ARM as
a feasibility problem so that ARM optimality cuts are

unnecessary.

4.2, Column Generation

Given the large number of flight strings and repaired
crew pairings, only a subset of columns is generated
through each of these problems. Multiple columns
are generated through a residual network, which is
built from the flight network for flight strings and the
crew duty network for repaired crew pairings. Given
a directed network G =(V, A), a dummy source and
sink node are added in which a variable (flight string
or repaired crew pairing) corresponds to an s — ¢
path. Paths are constructed by computing the reduced
cost for every arc a € A. Arcs with a sufficiently
high reduced cost are eliminated, and resulting paths
(columns) are generated. In order to generate mul-
tiple columns at once, a tolerance parameter € > 0
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is defined and all columns whose path p prices out
less than € are then added. This is sometimes known
as path generation through an e-residual network
(see Ahuja, Magnanti, and Orlin 1993 for a general
description; Shaw 2003 gives an example pertinent to
a traditional crew pairing problem). A summary of
this method is shown in Algorithm 1.

Algorithm 1 (Path Generation Through e-Residual
Network)

Given: Set of resources R, general resource network
G=(V, A), dual information 7, Vv e V, and
tolerance parameter € >0

Initialize: Newly generated variables X =@

for i=1 to |R| do
create augmented network for resource i,

G'=(V,A)
add source node s and sink node ¢
construct all arcs from s to eligible initial nodes
and arcs to ¢ from eligible end nodes
forall ae A do
compute reduced cost ¢,
if ¢, > € then
delete arc a: A — A\{a}
end if
end for
Let X' ={Up: pisans—t pathst Y ,,C, <e€
X—-X
end for
return new columns X

4.3. Simultaneous Row and Column Generation
The preceding section illustrates how we are employ-
ing both Benders cuts as well as column generation.
Although these two classical large-scale optimization
methods are widely known, they are isolated from
one another. Given an infeasible or suboptimal sub-
problem, a Benders cut f(x, ,, k;) < f, is added to
the master problem. But this cut generated is valid
only over the subset of strings S’ € S that has been
generated. Moreover, in the case of the CRM where
repaired crew pairings are also being generated, the
given cut is valid only over the subset of pairings
P’ C P that has been generated.

We discuss for two cases how these methods are
used together. The first deals with linking variables
that are done in a brute force way. The second shows
how this is done with local variables present in only
the CRM subproblem. A result is presented showing
a certificate that proves the validity of the cut being
returned to the master problem.

4.3.1. Flight Strings. A general Benders cut is
valid over all generated flight strings S € S. As new
strings are added, the Benders cut may be invalid for
some s € S\S'. Although to the best of our knowl-
edge, there does not exist a way to overcome this
barrier, we simply remove the Benders cuts any time
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new strings are added (a related problem introduced
by Van Roy 1983 is that of cross decomposition).
Because cycling may occur once the cuts are deleted,
we do not generate new strings within every itera-
tion. Rather, they are generated every k > 1 iterations
from the LP-relaxation of the master problem.

4.3.2. Repaired Crew Pairings. A Benders cut is
valid over all generated linking variables as well as
those local to the subproblem. However, if columns
are being added to the subproblem, new columns may
violate the previous cuts, rendering them as invalid
to all variables. Therefore any cut initially generated
becomes a candidate cut because it is feasible only
over all generated variables. In the context of the CRM,
we denote P’ C P to be the set of all generated pair-
ings. Below we handle the simultaneity of these two
procedures by first obtaining a certificate of infeasibil-
ity that proves the CRM is infeasible over all P for a
given master solution. If the candidate cut meets this
criterion, then the cut is added to the master. Other-
wise, it is discarded. In both cases, new columns are
being generated.

As discussed in §4.2, columns (repaired crew pair-
ings) are generated through a resource network
referred to as the master crew duty network G = (%, ),
where % denotes the set of all duties that have been
enumerated a priori, and ¢ is the set of arcs that can
legally connect consecutive duties. Recall that a duty
is a sequence of flights scheduled to be flown by a
crew in a period of time that usually corresponds to
one day. Given the stations and times at which crew k
is at the time of the disruption, and where they need
to be at the end of the disruption, the individual crew
duty network G* = (D*, A¥) is constructed. A source
and sink node are added that connect all eligible ini-
tial and end duties, respectively. A path from source
to sink is a repaired pairing that begins at the station
where the crew is at the beginning of the disruption
and ends at the station the crew is required to be at
by the end of the time window such that all legality
requirements are met.

Recall the CRM formulation given in §2.3. Let
m; and p, denote dual variables for constraints (14)
and (15), respectively. The reduced cost of a pairing p
for crew k is given by ¢ , =c; ,*" — s, 7; — py- Let
P, denote the set of all pairings for some crew k € K
where a subset P, € P’ has been generated. The fol-
lowing results give a certificate for which the CRM
feasibility cuts remain valid over all P.

THEOREM 4.1 (ExTENDING CRM FrasiBiLity CuTs
Over NEw PAIRINGS). Suppose the CRM is infeasible
over a subset of pairings P' C P. Let {m}, {p,} denote the
duals corresponding to the Phase 1 LP-relaxation of the
CRM. If

YA —k)me 4D pe > max{ max (Z o +pk>},

feF keK keK | peP\P; fep
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then the CRM is infeasible over all P, and the candidate
Benders feasibility cut is valid over all strings and pairings.

ProOF. As a corollary to Farkas” Lemma the CRM
is infeasible over all P if and only if there exists
(a, B, A) e Rl x Rl x R such that

Z(l_Kf)af+Zﬁk>A,
feF keK
fepx ()
B.<A VkeK.

If the CRM is infeasible, let 7, and p, denote the
duals associated with the Phase I LP of the CRM. For
all k € K let PPV denote the newly generated pair-
ings on G* that have been generated. Moreover, for
all k e K let Ay =max{} ;., 77 + pi: p € P} denote the
value of the pricing problem (recall that in the Phase I
problem ¢, #" =0 Vk € K, p € P)). By letting 0 < A=
min,{A.}, the second condition of (&) holds by con-
struction, and the first condition holds by assumption.
The latter two conditions trivially hold by Phase I
duality and because A > 0. Hence (7, p, A) € (#), and
the CRM is infeasible over all P. O

The analogue for the case of Benders optimality
cuts is seen in the following result.

THEOREM 4.2 (ExTENDING CRM OptimMALITY CUTS
OveR NEw PAIRINGS). Suppose the CRM is suboptimal
over a subset of pairings P' C P. Let {m}, {p,} denote the
CRM duals, and let m* denote the continuous master vari-
able corresponding to the optimal objective of the CRM. If

1—k)m,+ +min{ min ¢ > 0%,
jé( f) f g(.ok T {pePk\P,Q k,p} n
then the CRM is suboptimal over all P, and the candi-
date Benders optimality cut is valid over all strings and
pairings.

Proor. Consider two classes of CRM constraints
(14) and (15) together with the single equality

Z Z sz:;ignyk,p + Z d}fjairingsf + Z dEasevk — n*

keK pePy feF keK

The preceding has no solution over all P if and only
if there exists («, 8, v, A) to the following system:

Y (—kp)as+ ) Be+yn >4,
feF keK

Y a;+B+vye, <A YkeK, Vp el
fepx N (o)
—C(f‘i"yd? gSA VfEF,

Bi+ydime <A VkeK.
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If y = —1, the latter two conditions are satisfied by
dual feasibility, and the second amounts to C,p <A
For all k let Ay = min{—¢, ,} denote the minimum
reduced cost generated over G*. As before, let A =
min, g {A.}. It is assumed that A > 0 because a new
column prices out. Therefore the latter two condi-
tions hold by duality, the second holds by construc-
tion, and the first by assumption. Thus (7, p, A, —1) €
(o), and the CRM is suboptimal over all strings and
pairings. 0

Algorithm 2 summarizes the implementation of the
two preceding theorems in the context of our solution
strategy for the case of an infeasible CRM. A similar
algorithm is implemented for when the CRM is feasi-
ble, but we do not include the details herein.

Algorithm 2 (Handling Column Generation and Con-
straint Generation Together in CRM [Infeasibility])
Solve LP-Relaxation for CRM
Initialize validCut = false
if CRM is infeasible over P’ then
Extract dual extreme ray (7, p;) and
Phase-I duals (7, p;).
Let 3 rep(1—Kkf) s + ke P < 0 denote the
candidate Benders feasibility cut
for all crew k€ K do
Construct subgraph G*(D, A) of crew
duty network G* from (7}, p})
Generate new columns P}V over the
e-residual network over G¥(D, A)
if a new column exhibits a negative reduced

cost then
Set Ay = max,cp, Y re, T + py
else
Set A, =0
end if
end for

Set A =max, g A,
if 3 rep(1—Kp) T+ Yhex pr > A then
set validCut = true
end if
if validCut = true then
add candidate Benders cut to master problem
else
update columns P’ — P'(J;x PP¢", and
re-solve CRM relaxation
end if
end if

4.4. Integrality

The iterative Benders scheme solves only the mas-
ter problem (SRM) to integrality and solves the
subsequent three subproblems in their respective
LP-relaxations. Once the iterative algorithm has
terminated, then branching is done to find a nearby
solution if a fractional solution is present. If no
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feasible integer solution is found by branching, the
node returned by the algorithm is then rejected and
the procedure is to continue until an integer solution
is delivered. We discuss how integrality is obtained in
each of the three subproblems.

SRM Integrality. The SRM module is solved to
integrality using branch-and-cut. One particularly
useful strategy is to branch on follow-ons. This concept
was introduced by Falkner and Ryan (1987). A follow-
on is a pair of flights that are contained in the same
fractional-valued string. The branching dichotomy
either forces or forbids the given follow-on. Anbil,
Tanga, and Johnson (1992) and Lettovsky, Johnson,
and Nemhauser (2000) show follow-on branching to
be successful in driving integrality of crew recovery
models in particular. We find this branching strategy
to also be very effective in the SRM.

ARM Integrality. One of the advantages of the
flight string models is it makes the routing problem
considerably easier to solve as shown in Theorem 4.3.

THEOREM 4.3 (ARM INTEGRALITY). The polyhedron
associated with the LP-relaxation of the ARM is integral.

Proor. This problem reduces to a maximum car-
dinality bipartite matching problem for node sets
aircraft-string assignments {x] .} and assigned strings
from the master problem {x; }. This class of prob-
lems is well known to be integral (Nemhauser and

Wolsey 1999). O

CRM Integrality. Solving the LP-relaxation of the
CRM induces integer solutions in many scenarios.
However, the polytope is itself not integral. Similar
to the case of driving SRM integrality, we employ
branching on follow-ons with respect to fractional
crew pairings.

IRM Integrality. Solving the PRM could be done
through a multicommodity network flow algorithm
yielding integer solutions. However, the associated
polyhedra is highly integral, and branching is done
only in the presence of a fractional solution.

4.5. Overview
Figure 4 summarizes our approach to solving the air-
line integrated recovery (AIR) model.

5. Computational Results

Our model is tested using 2007 data from a hub-
and-spoke regional airline based in the United States
with approximately 800 daily flights and two fleet
types. The main disruption of interest is a flow rate
reduction into and out of the hub and possibly other
stations. We consider a reduction in terms of a cer-
tain percentage of scheduled operations as well as
a full hub closure for some period of time. Table 2
summarizes the benchmark parameters used in the
results obtained. As shown in the table, the SRM cost
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Table 2 Benchmark Parameters Used in Computations

Parameter Description Value
c’s™  Cost of assigning equipment e € £ to string s € S $0
cgancel Cost of canceling flight f € F $25,000
Chs Cost of assigning tail n € AC(e) to string s € S $0
cfj_;_g” Cost of assigning crew k pairing p $0
dP™™  Cost of deadheading on flight f within a pairing $1,000
apese Cost of crew k deadheading to crew base $2,000
¢ Cost in passenger goodwill per hour of delay $38

iy
unassign
i

C Cost of unassigned itinerary for passenger i € 0D $2,500

P
1
> Vel

U

w; Weight of passenger itinerary cost in IRM

objective is only to minimize the cost associated with
canceling flights while ignoring the cost of assigning
equipment to flight strings. An obvious alternative is
to penalize all flights whose equipment type deviates
from the schedule. The same could be said for assign-
ing individual tails to flight strings in the ARM. The
cost of $38 per hour of passenger delay is given by
Ball et al. (2010).

Note that we consider a zero objective on indi-
vidual crew pairing assignments. This is because the
crew recovery problem is quite different from the
well-known crew pairing problem, where the objec-
tive is to minimize the sum of crew pairing assign-
ments known as pay-and-credit, a complex objective
that factors in the total time the crew is away from
base, flying hours, and number of duties in a pairing.
Deadhead costs are influential to the cost of the entire
pairing, and therefore by minimizing deadhead costs
during the broken part of a crew pairing, pay-and-
credit can be reduced.

The data represented in Table 2 come from a pri-
ori knowledge about the given network and air-
line under consideration. Of course, different airlines
could incorporate their own set of parameters char-
acterizing their own idiosyncratic values. We empha-
size that what is important are not the specific values
per se, but rather the methodology that determines
the set of rescheduling decisions because different sets
of parameters could be used to reflect other carriers.

Our goal is to deliver a solution within 30 minutes
as agreed upon by our industry partners. Although
this number is likely greater than the allowable time
posed by an OCC coordinator, we emphasize the
challenges posed by this particular regional carrier
are among the most complex and difficult-to-solve
class of problems. Moreover, our implementation
serves only as a prototype versus production soft-
ware. A number of ways to expedite our implemen-
tation exist, including utilizing parallelization and
improved computational infrastructure that is likely
to be found at an OCC. We emphasize that our model
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is scalable. For small disruptions that airlines have to
deal with every day, much less time is needed, but
the model is able to provide an answer for larger sce-
narios. Even by sacrificing on optimality, our model
is likely able to provide an improvement over incum-
bent methods that often rely on the manual construc-
tion of rescheduling decisions.

Our model has been implemented in C++ using
Concert/CPLEX 12.2 on a quad-core computing clus-
ter whose head node is a 2.66 GHz Xeon X5355
processor.

Problem Size and Length of Disruption. Section 3
discussed how the scope of the recovery operation
was limited. Figure 5 shows how the number of dis-
ruptable flights grows with respect to the duration of
closure at the hub beginning at 8:00 A.m. local time.
Although a one-hour disruption affects nearly half the
flights, every flight is disruptable when the length
of the disruption reaches 105 minutes. This is partly
because the data set comes from a regional carrier
whose flight legs are typically short relative to major
carriers whose networks span a larger geographical
region. This is readily seen because every tail num-
ber has some activity at the hub between 8:00 and
9:15 A.M. local time.

Build vs. Repair of Crew Duty Network. One of
the major bottlenecks in the solution process out-
lined above is the construction of and generating
paths through the crew duty network. Because this
network is apt to change for each new scheduling
decision made in the master problem, there are two
approaches how to manage the crew duty network.
The first is to build it once before the iterative process
begins, then heuristically repair broken duties and
missed connections and repair the original network
based on the current scheduling decisions. The second
is to construct a new network entirely after each mas-
ter solution. The obvious tradeoff is computational

1001
90+
801
701
601
501
40+
301

Percentage of all flights

201
10+

0

30 45 60 75 90 105 120
Hub closure duration (minutes)

Figure 5 Disruptable Flights and Length of Hub Closure



Downloaded from informs.org by [211.65.109.60] on 05 May 2016, at 05:25 . For personal use only, all rights reserved.

Petersen et al.: An Optimization Approach to Airline Integrated Recovery

Transportation Science 46(4), pp. 482-500, © 2012 INFORMS

497

resources spent constructing the crew duty network
and information about the true network. If the time
window includes more than one day, the number
of connecting duties increases substantially thereby
making the CRM even more complex, and the former
approach is more plausible. As a first attempt to study
the AIR problem, we begin by restricting our analy-
sis to a one-day time window so that the crew duty
network can be rebuilt within each iteration. It may
be naturally of interest to take the other approach for
larger problems. The multiday problem would require
a different set of algorithms.

5.1. Disruption Scenarios
We model three classes of disruption scenarios:

1. 50% reduction in flow rate (arrivals and
departures);

2. 75% reduction in flow rate (arrivals and depar-
tures); and

3. 100% reduction in flow rate (arrivals and
departures).

Each scenario will examine four different
disruption events characterized by a disruption time,
disruption location, and time window shown in
Table 3. Scenario 4 considers two disruptions: one at
the hub and the other at one of the largest spokes
used in the network. Given the growth of problem
size on the length of hub closure (see Figure 5), we
consider a maximum hub disruption to be 75 min-
utes, which our heuristic search procedure includes
for every flight after the disruption. The final column
represents the maximum delay considered, which
has a profound effect on the number of strings
being generated. For a two-hour hub disruption, the
total number of flight strings (that contain no more
than seven flights) increases from under 200,000
using a one-hour maximum delay period to more
than 2.6 million using a three-hour maximum delay
period. If a set of passenger itineraries is suboptimal
after the 30-minute threshold, the best incumbent
solution is given and passed to the ARM and CRM
subproblems. The algorithm has timed out only for
the largest scenarios in our study.

5.2. Integrated vs. Sequential Recovery
We report costs for all subproblems and important
metrics that determine quality of solution. We do not

Table 3 Disruption Events

Disruption Disruption Time Max delay time
Event time location window T (minutes)
1 08:00-08:30 Hub 08:00-23:59 90
2 08:00-09:00 Hub 08:00-23:59 120
3 08:00-09:15 Hub 08:00-23:59 150
4 08:00-09:00 Hub 08:00-23:59 120

09:00-14:00 Spoke

Table 4 Sequential Recovery Summary (50% Flow Rate Reduction)

Event
1 2 3 4

Subproblem costs ($)

SRM 0 0 0 150,000

ARM 0 0 0 INFEAS

CRM 0 0 0 INFEAS

PRM 11,653 28,257 55,665 116,471
Solution metrics

Mean flt delay 20:05 23:34 42:21 41:36

Cancelled flts (%) 0 0 0 4.6

Delayed flts (%) 12.8 59.4 56.2 52.0

Total deadheads 0 0 0 INFEAS

Mean PAX delay 23:09 24:28 45:39 39:15

Unassigned PAX 0 4 5 31

CPU time 0:58 07:28 17:20 12:02

report costs for the ARM in the integrated model
because it amounts to a feasibility problem and is
always feasible in the sequential module. All times
are reported in MM:SS format.

Disruption Scenario 1: 50% Flow Rate Capacity
Reduction. Tables 4 and 5 show the first set of results
for a 50% flow rate reduction into and out of the
hub for the sequential process and integrated process,
respectively.

Disruption Scenario 2: 75% Flow Rate Capacity
Reduction. Tables 6 and 7 show the results from
reducing capacity by 75%.

Disruption Scenario 3: Hub Closure. Finally we
consider a full closure into and out of a set of stations
prohibiting all arrivals and departures within the dis-
ruption time, which is shown in Tables 8 and 9.

In both environments, a warm start is provided to
the initial SRM that preserves all scheduled routings
incorporating the minimum possible delay with each
flight (thereby initially not considering flight cancel-
lations). As a result the integrated and sequential

Table 5 Integrated Recovery Summary (50% Flow Rate Reduction)

Event
1 2 3 4

Subproblem costs ($)

SRM 0 0 0 50,000

CRM 0 0 0 4,000

PRM 11,653 22,942 46,057 54,820
Solution metrics

Mean flt delay 20:05 20:34 39:50 33:41

Cancelled flts (%) 0 0 0 1.6

Delayed flts (%) 12.8 35.1 38.0 49.3

Total deadheads 0 0 0 2

Mean PAX delay 23:09 21:47 39:22 33:37

Unassigned PAX 0 3 3 5

CPU time 1:02 24:41 32:28 36:34
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Table 6 Sequential Recovery Summary (75% Flow Rate Reduction) Table 8 Sequential Recovery Summary (Hub Closure)
Event Event
1 2 3 4 1 2 3 4
Subproblem costs ($) Subproblem costs ($)
SRM 0 0 0 150,000 SRM 0 0 0 175,000
ARM 0 0 INFEAS INFEAS ARM 0 0 0 INFEAS
CRM 0 0 INFEAS INFEAS CRM 0 0 0 INFEAS
PRM 15,316 29,440 62,316 85,039 PRM 17,979 32,057 56,730 133,573
Solution metrics Solution metrics
Mean flt delay 17:57 28:24 46:58 44:01 Mean flt delay 28:10 25:28 27:51 49:47
Cancelled flts (%) 0 0 0 4.6 Cancelled flts (%) 0 0 0 4.0
Delayed flts (%) 28.7 37.7 52.3 54.4 Delayed flts (%) 66.9 64.2 59.3
Total deadheads 0 0 INFEAS INFEAS Total deadheads 0 0 0 INFEAS
Mean PAX delay 22:19 28:52 50:23 44:41 Mean PAX delay 17:56 31:46 41:58 43:41
Unassigned PAX 2 4 8 24 Unassigned PAX 4 4 3 36
CPU time 1:01 10:02 14:11 14:29 CPU time 0:35 17:50 31:01 20:41

solutions may coincide if the warm start is optimal.
This occurs in two of the scenarios, which explains
why the integrated recovery framework provides no
improvement. Of course, relaxing the warm start will
induce the integrated solution to dominate its sequen-
tial counterpart. No scenarios were encountered from
the integrated model where no integer feasible solu-
tion was found to a subproblem after the Benders
framework has terminated.

We note that the 75-minute disruption seems to pro-
hibit obtaining a solution in our 30-minute runtime
goal. Although about 60% of the flights are initially
disruptable from the scheduled routings, all flights
are disruptable through the process by which we limit
the scope (§3). Moreover, the number of strings is
vastly higher because of a longer maximum flight
delay period. The multiple disruption scenario per-
forms better, but it does not always meet the runtime
goal in the integrated setting (Tables 5 and 7).

Moreover we note the improvement in solution
quality the integrated approach delivers over the
sequential one. First, note that 25% of the scenarios

show the sequential approach is infeasible where the
integrated approach always delivers a solution. Sec-
ondly, we note a reduction in the key performance
metrics that include flight delay, passenger delay, and
cost of recovery. Table 10 shows how the integrated
module reduces mean passenger delay, mean flight
delay, and passenger reaccommodation costs by aver-
aging across the 50%, 75%, and 100% capacity reduc-
tion scenarios. Of particular interest in the behavior of
mean passenger delay, which is reduced by as much
as 14.5% in the 75-minute disruption. The integrated
model also reduces passenger reaccommodation costs
considerably.

Another question of interest is how the solution
quality changes with respect to input parameters. Fig-
ure 6 shows two experiments of interest using the
60-minute hub closure disruption scenario. Panel 6(a)
shows how the cancellation rate changes with respect
to the cost of flight cancellations ¢!, As mentioned
previously, the airline under consideration is highly
adverse to flight cancellations because of their own
idiosyncratic requirements. The figure shows that as

Table 7 Integrated Recovery Summary (75% Flow Rate Reduction) Table 9 Integrated Recovery Summary (Hub Closure)
Event Event
1 2 3 4 1 2 3 4
Subproblem costs ($) Subproblem costs ($)
SRM 0 0 0 100,000 SRM 0 0 0 100,000
CRM 0 0 0 5,000 CRM 0 0 0 5,000
PRM 15,316 22,198 51,336 40,489 PRM 12,186 24,566 41,993 58,300
Solution metrics Solution metrics
Mean flt delay 17:57 28:31 44:01 33:05 Mean flt delay 19:25 23:24 29:39 34:40
Cancelled flts (%) 0 0 0 2.3 Cancelled flts (%) 0 0 0 2.3
Delayed flts (%) 28.7 38.1 421 56.4 Delayed flts (%) 26.4 40.6 59.1 58.5
Total deadheads 0 0 0 3 Total deadheads 0 0 0 3
Mean PAX delay 22:19 20:36 41:44 36:19 Mean PAX delay 16:04 21:02 36:41 41:54
Unassigned PAX 2 3 6 7 Unassigned PAX 2 4 3 7
CPU time 1:04 23:20 30:56 32:27 CPU time 1:46 24:09 31:00 24:22
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Table 10 Summary of Improvement from Integrated Model

Performance metric improvement (%)

Mean passenger Mean flight
Event delay delay PRM cost
30-minute disruption 2.9 13.2 12.9
60-minute disruption 13.7 6.2 22.3
75-minute disruption 14.5 3.3 20.3
Multiple disruptions 12.4 25.1 54.2

long as the cost associated with a cancellation ex-
ceeds $15,000 per flight, the same recovery tactic that
considers only delays remains optimal. Cancellations
only become desirable when the cancellation penalty
is between $10,000 and $15,000 per flight. Panel 6(b)
illustrates the tradeoff between the severity of pas-
senger delay and cancellations by changing the cost
of unassigned passengers ¢; ° . The solution sum-
marized in Table 9 (setting c¢;""*" to $2,500 for all
i € OD) remains the optimal solution for all values
;""" that exceed $1,000. The tradeoffs between pas-
senger delay and flight cancellations change the solu-
tion only when the penalty parameter is between $500
and $1,000 per passenger. Therefore, the optimal solu-
tion attained in the integrated model for the one-hour
hub closure is robust with respect to these two input
parameters under consideration. For brevity we do
not report the full set of parametric studies in this
paper, but they are available in Petersen (2011).

6. Conclusion and Future Work

This paper seeks to solve the airline integrated recov-
ery problem by mathematical programming tech-
niques yielding a passenger-friendly solution with
crew considerations. Unless the disruption period
affects only a small measure of flights, delivering a
globally optimal solution is unlikely to be achieved
within a reasonable runtime. Therefore schemes that
limit the problem size and allow for efficient decom-
position are essential in the construction of the solu-
tion procedure. With these strategies implemented as
we have discussed, we have shown that the AIR
problem is solvable under several reasonably sized
disruptions.

This paper is one of the first attempts to computa-
tionally solve the fully integrated problem. Our inte-
grated model has shown to be effective when no more
than 65% of the flights are disruptable and the time
horizon is one day for this particular airline. When
either of these criteria is violated, the model tends to
grow too rapidly for the current implementation to
handle. We reiterate that the airline under consider-
ation operates a dense network. Our approach may
well handle longer time horizons on other networks.
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An efficient procedure was introduced that allows
us to simultaneously consider constraint generation
and column generation by working on a subnetwork
of the original crew duty network when generating
repaired crew duties.

There are a number of interesting questions that
arise from our study. The main difficulty in solv-
ing such instances involving longer disruptions stems
from large overhead costs in terms of building the
crew duty network. Recall that in our procedure, this
network is built after each solution from the master
problem is found. Building the network, and more so
generating paths over the network, can be time con-
suming even for a one-day problem when the num-
ber of connecting duties is relatively small. Extending
this to a multiday framework where the number of
connecting duties grows rapidly makes this process
unlikely to yield a satisfactory result in a 30-minute
time frame. To handle such larger problems, it would
likely be advantageous to build the network once
before the optimization module is called based on the
original flight schedule and locally repair the network
within each iteration, as opposed to building it anew
every iteration. Our model could also be implemented
by parallelizing components of the problem to reduce
computational effort. Another relevant question is to
seek whether the Benders cuts can be strengthened to
obtain a tighter LP-relaxation of the master problem.
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Figure 6 Sensitivity Analyses for a One-Hour Hub Closure
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One possible approach would be to lift in additional
coefficients whose dual was zero. Another would be
to shift in the Benders cut further to the interior of
the feasible region for the SRM.
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