数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 1964|回复: 0

请问各位bezier curve的控制顶点是如何理解的?

[复制链接]
发表于 2004-10-16 18:37:28 | 显示全部楼层 |阅读模式
<><FONT size=1>请问各位bezier curve的控制顶点是如何理解的?</FONT></P>
<>在MATLAB  中的bezier如下:</P>
<> BESSELJ Bessel function of the first kind.
    J = BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).
    The order NU need not be an integer, but must be real.
    The argument Z can be complex.  The result is real where Z is positive.

    If NU and Z are arrays of the same size, the result is also that size.
    If either input is a scalar, it is expanded to the other input's size.
    If one input is a row vector and the other is a column vector, the
    result is a two-dimensional table of function values.

    J = BESSELJ(NU,Z,1) scales J_nu(z) by exp(-abs(imag(z)))

    [J,IERR] = BESSELJ(NU,Z) also returns an array of error flags.
        ierr = 1   Illegal arguments.
        ierr = 2   Overflow.  Return Inf.
        ierr = 3   Some loss of accuracy in argument reduction.
        ierr = 4   Complete loss of accuracy, z or nu too large.
        ierr = 5   No convergence.  Return NaN.

    Examples:

        besselj(3:9,(0:.2:10)') generates the entire table on page 398
        of Abramowitz and Stegun, Handbook of Mathematical Functions.

        MEMBRANE uses BESSELJ to generate the fractional order Bessel
        functions used by the MathWorks Logo, the L-shaped membrane.

    This M-file uses a MEX interface to a Fortran library by D. E. Amos.</P>
<P>但是如果我是要曲线的控制顶点分别为(0,0),(1,2),(4,2),(6,0)等又如何利用上述函数作输入呢?我试图将以上各顶点直接输入,但出来的效果非常差!是否还有其他的理解呢?其它的方法??</P>
<P>请各位不吝赐教,谢谢!!</P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-27 23:52 , Processed in 0.062392 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表