<>但题中说每行或每列有n(n-1)条links: then the time dependent function Cov(ij,kl) is a n(n-1)/2 sqaure matrix, each row or column representing a link 12,…,1n,21, …,2n,…n1,n2,… n(n-1).</P>
<>如何解释???</P>
<FONT face="宋体, MS Song"> It is assumed that travel time follows the same rule as question 1, average link travel time is proportional to link length, variance of link travel time is proportional to the reciprocal of as well as proportional to the product of the number of links connecting to the two nodes at both ends of the link.<v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape></FONT>