数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 7327|回复: 11

单循环赛程编排的数学模型

[复制链接]
发表于 2004-7-24 07:47:43 | 显示全部楼层 |阅读模式
<DIV class=Section1 style="LAYOUT-GRID:  15.6pt none">
<  align=center><B ><p></p></B></P>
<  align=center><B ><p></p></B></P>
< ><B >摘  要</B><B>:</B><B >  </B>用邻接矩阵的方式建立了单循环赛程编排的数学模型,给出了尽量公平原则的最优上限和下限,并以图论方法详细描述了<SUB><v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0 "></v:f><v:f eqn="sum @0 1 0 "></v:f><v:f eqn="sum 0 0 @1 "></v:f><v:f eqn="prod @2 1 2 "></v:f><v:f eqn="prod @3 21600 pixelWidth "></v:f><v:f eqn="prod @3 21600 pixelHeight "></v:f><v:f eqn="sum @0 0 1 "></v:f><v:f eqn="prod @6 1 2 "></v:f><v:f eqn="prod @7 21600 pixelWidth "></v:f><v:f eqn="sum @8 21600 0 "></v:f><v:f eqn="prod @7 21600 pixelHeight "></v:f><v:f eqn="sum @10 21600 0 "></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata src="./mathmodel1.files/image001.wmz" title=""></v:imagedata></v:shape></SUB>为偶数和<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image001.wmz" title=""></v:imagedata></v:shape></SUB>为奇数情形均衡解编排的全部过程.作为特例,得到了<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image004.wmz" title=""></v:imagedata></v:shape></SUB>情形的均衡解.<p></p></P>
<P ><B >关键词</B><B>:</B><B >  </B>赛程;邻接矩阵;均衡解<p></p></P>
<P ><B >中图分类号</B><B>:</B><B > </B>O157.6      <B >文献标识码</B><B>:</B><B > </B>A      <B >文章编号</B><B>:</B><B > </B>1672-0318(2003)01-  <p></p></P>
<P><B > <p></p></B></P>
<P>  单循环赛程编排的数学建模是2002年9月全国大学生数学建模竞赛所提出的问题之一,无论是参赛论文还是竞赛委员会所提供的参考答案,都没有给出令人满意的解答和建设性的一般结果.作者以邻接矩阵的方式建立起这一问题的数学模型,得到了“尽量公平原则“的最优上限和下限,并借助图论方法给出了赛程均衡解直观、完整的编排过程.<p></p></P>
<P  align=center><B > <p></p></B></P>
<P><B >1  问题的提出</B><B ><p></p></B></P>
<P > <p></p></P>
<P >在某些情况下,需要在同一场地上进行单循环比赛,尽量公平的赛程安排是充分调动参赛各队的积极性,提高比赛水平的前提.</P>
<P >例如,某年级有5个班,每班一支足球队在同一块场地上进行单循环比赛,共要进行10场比赛,下面是随便安排的一个赛程:</P>
<P >记5支球队为<I>A</I>,<I>B</I>,<I>C</I>,<I>D</I>,<I>E</I>,在表1左半栏的右上三角的10个空格中,随手填上1,2,…,10,得到一个赛程,即第1场<I>A</I>对<I>B</I>,第2场<I>B</I>对<I>C</I>,…,第10场<I>C</I>对<I>E</I>. </P>
<P > <p></p></P>
<P  align=center>表1  5支球队的一个赛程安排</P>
<DIV align=center>
<TABLE  cellSpacing=0 cellPadding=0 border=0>

<TR>
<TD  vAlign=top width=25>
<P > <I ><p></p></I></P></TD>
<TD  vAlign=top width=25>
<P ><I>A<p></p></I></P></TD>
<TD  vAlign=top width=25>
<P ><I>B<p></p></I></P></TD>
<TD  vAlign=top width=28>
<P ><I>C<p></p></I></P></TD>
<TD  vAlign=top width=25>
<P ><I>D<p></p></I></P></TD>
<TD  vAlign=top width=28>
<P ><I>E<p></p></I></P></TD>
<TD  vAlign=top width=168>
<P>每两场比赛间隔的场次数</P></TD></TR>
<TR>
<TD  vAlign=top width=25>
<H3>A</H3></TD>
<TD  vAlign=top width=25>
<P >X</P></TD>
<TD  vAlign=top width=25>
<P >1</P></TD>
<TD  vAlign=top width=28>
<P >9</P></TD>
<TD  vAlign=top width=25>
<P >3</P></TD>
<TD  vAlign=top width=28>
<P >6</P></TD>
<TD  vAlign=top width=168>
<P  align=center>1, 2, 2</P></TD></TR>
<TR>
<TD  vAlign=top width=25>
<P ><I>B<p></p></I></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=25>
<P >X</P></TD>
<TD  vAlign=top width=28>
<P >2</P></TD>
<TD  vAlign=top width=25>
<P >5</P></TD>
<TD  vAlign=top width=28>
<P >8</P></TD>
<TD  vAlign=top width=168>
<P  align=center>0, 2, 2</P></TD></TR>
<TR>
<TD  vAlign=top width=25>
<P ><I>C<p></p></I></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=28>
<P >X</P></TD>
<TD  vAlign=top width=25>
<P >7</P></TD>
<TD  vAlign=top width=28>
<P >10</P></TD>
<TD  vAlign=top width=168>
<P  align=center>4, 1, 0</P></TD></TR>
<TR>
<TD  vAlign=top width=25>
<P ><I>D<p></p></I></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=28>
<P > <p></p></P></TD>
<TD  vAlign=top width=25>
<P >X</P></TD>
<TD  vAlign=top width=28>
<P >4</P></TD>
<TD  vAlign=top width=168>
<P  align=center>0, 0, 1</P></TD></TR>
<TR>
<TD  vAlign=top width=25>
<P ><I>E<p></p></I></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=28>
<P > <p></p></P></TD>
<TD  vAlign=top width=25>
<P > <p></p></P></TD>
<TD  vAlign=top width=28>
<P >X</P></TD>
<TD  vAlign=top width=168>
<P  align=center>1, 1, 1</P></TD></TR></TABLE></DIV>
<P> <p></p></P>
<P >这个赛程的公平性如何呢?从表1右半栏各队每2场比赛之间相隔的场次数不难看出,这个赛程对<I>A</I>,<I>E</I>有利,对<I>D</I>则不公平.若<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image006.wmz" title=""></v:imagedata></v:shape></SUB>个队实力相当,且在同一场地上进行单循环比赛,建立尽量公平赛程编排的数学模型就尤为必要.</P>
<P><B > <p></p></B></P>
<P><B >2  模型的建立</B><B ><p></p></B></P>
<P >设<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image008.wmz" title=""></v:imagedata></v:shape></SUB>个队为<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image010.wmz" title=""></v:imagedata></v:shape></SUB>,…,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image012.wmz" title=""></v:imagedata></v:shape></SUB>,在同一场地上进行单循环比赛的场数共有:</P>
<P  align=right><v:line></v:line><SUB><v:shape><v:imagedata src="./mathmodel1.files/image015.wmz" title=""></v:imagedata></v:shape></SUB>.                                                    (1)</P>
<P  align=left>我们将赛程转化成邻接矩阵:</P>
<P >1)以参赛队表示矩阵的行,比赛场次表示矩阵的列;</P>
<P >2)在某场所对应的列中,参加比赛的队取1值,没参加比赛的队取0值.</P>
<P >例如,表1中所给赛程的邻接矩阵为:</P>
<P  align=center>   <SUB><v:shape><v:imagedata src="./mathmodel1.files/image017.wmz" title=""></v:imagedata></v:shape></SUB></P>
<P  align=right><SUB><v:shape><v:imagedata src="./mathmodel1.files/image019.wmz" title=""></v:imagedata></v:shape></SUB><SUB><v:shape><v:imagedata src="./mathmodel1.files/image021.wmz" title=""></v:imagedata></v:shape></SUB>                    (2)</P>
<P>其中每行中的“0”的个数为该队休息的场次数.一般赛程可转化如下:</P>
<P >设<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image023.wmz" title=""></v:imagedata></v:shape></SUB>为第<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image025.wmz" title=""></v:imagedata></v:shape></SUB>行第<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image027.wmz" title=""></v:imagedata></v:shape></SUB>列的元素为1、其他元素均为0的<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image029.wmz" title=""></v:imagedata></v:shape></SUB>矩阵,那么参赛队<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image031.wmz" title=""></v:imagedata></v:shape></SUB>的赛程安排可以表示为:</P>
<P  align=right><SUB><v:shape><v:imagedata src="./mathmodel1.files/image033.wmz" title=""></v:imagedata></v:shape></SUB>                        (3)</P>
<P  align=right>整个赛程可表示为邻接矩阵:<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image035.wmz" title=""></v:imagedata></v:shape></SUB>.                          (4)</P>
<P>其中<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image037.wmz" title=""></v:imagedata></v:shape></SUB>满足:</P>
<P >1)<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image039.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image041.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image043.wmz" title=""></v:imagedata></v:shape></SUB>);</P>
<P >2)<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image045.wmz" title=""></v:imagedata></v:shape></SUB>= <SUB><v:shape><v:imagedata src="./mathmodel1.files/image047.wmz" title=""></v:imagedata></v:shape></SUB>(即<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image049.wmz" title=""></v:imagedata></v:shape></SUB>的行和为每个队参加比赛的场次数<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image051.wmz" title=""></v:imagedata></v:shape></SUB>);</P>
<P >3)<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image053.wmz" title=""></v:imagedata></v:shape></SUB>(即<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image049.wmz" title=""></v:imagedata></v:shape></SUB>的列和为每场参加比赛的队的个数).</P>
<P> </P>
<P  align=center><B> <p></p></B></P>
<P  align=center><FONT color=#0000ff><a href="http://210.39.32.95/wxh/default.htm" target="_blank" ><B></B></A></FONT> </P></DIV>
 楼主| 发表于 2004-7-24 07:48:20 | 显示全部楼层
<><B> <p></p></B></P><><B normal">3  尽量公平原则的定量表示<p></p></B></P>< center" align=center><B normal"> <p></p></B></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">为了实现尽量公平原则,首先每个队任2场比赛间间隔的场次数应大于等于1;其次对每个参赛队来说,他们的最优期望是每2场比赛之间的间隔场次数要尽可能地大和尽可能地平均分布.</P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">显然,在同一场地上进行单循环比赛的<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image008.wmz" title=""></v:imagedata></v:shape></SUB>个队中,每个队均要比赛<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image057.wmz" title=""></v:imagedata></v:shape></SUB>场,共有<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image059.wmz" title=""></v:imagedata></v:shape></SUB>次间隔.设参赛队<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image031.wmz" title=""></v:imagedata></v:shape></SUB>每两场比赛之间间隔的场次数分别为<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image062.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image064.wmz" title=""></v:imagedata></v:shape></SUB>,…,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image066.wmz" title=""></v:imagedata></v:shape></SUB>,则根据式(1)可知:</P><P break-all; TEXT-ALIGN: right" align=right><B><SUB><v:shape><v:imagedata src="./mathmodel1.files/image068.wmz" title=""></v:imagedata></v:shape></SUB></B><B>.                  </B>(5)<B><p></p></B></P><P>令<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image070.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image072.wmz" title=""></v:imagedata></v:shape></SUB>,则有</P><P center" align=center><B><SUB><v:shape><v:imagedata src="./mathmodel1.files/image074.wmz" title=""></v:imagedata></v:shape></SUB><SUB><v:shape><v:imagedata src="./mathmodel1.files/image076.wmz" title=""></v:imagedata></v:shape></SUB><p></p></B></P><P>即</P><P break-all; TEXT-ALIGN: right" align=right><B>                               <SUB><v:shape><v:imagedata src="./mathmodel1.files/image078.wmz" title=""></v:imagedata></v:shape></SUB></B><B>        </B><B>       </B><B>   </B>(6)</P><P>令<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image080.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image082.wmz" title=""></v:imagedata></v:shape></SUB>,即<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image084.wmz" title=""></v:imagedata></v:shape></SUB>和<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image086.wmz" title=""></v:imagedata></v:shape></SUB>分别为整个赛程中所有队间隔场次数的最大值和最小值,有:</P><P 21pt"><B>定理1</B>   <SUB><v:shape> <v:imagedata src="./mathmodel1.files/image088.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image090.wmz" title=""></v:imagedata></v:shape></SUB>.</P><P 21.1pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.55pt"><B>证明</B>  先证<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image088.wmz" title=""></v:imagedata></v:shape></SUB>.由(6)式可知:<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image093.wmz" title=""></v:imagedata></v:shape></SUB>,我们只需证明<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image095.wmz" title=""></v:imagedata></v:shape></SUB>.采用反证法,若<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image097.wmz" title=""></v:imagedata></v:shape></SUB>,则</P><P 21.75pt">1)当<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image008.wmz" title=""></v:imagedata></v:shape></SUB>为奇数时,有<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image100.wmz" title=""></v:imagedata></v:shape></SUB>,注意到</P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image102.wmz" title=""></v:imagedata></v:shape></SUB>,</P><P center" align=center><B><SUB><v:shape><v:imagedata src="./mathmodel1.files/image104.wmz" title=""></v:imagedata></v:shape></SUB><SUB><v:shape><v:imagedata src="./mathmodel1.files/image076.wmz" title=""></v:imagedata></v:shape></SUB></B><B>,</B></P><P>且<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image107.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image109.wmz" title=""></v:imagedata></v:shape></SUB>),于是我们有</P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image111.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image113.wmz" title=""></v:imagedata></v:shape></SUB>),</P><P>由此可知,所有参赛队都必须在同一场次同时参赛,这与比赛的单循环规则相矛盾.</P><P 21.75pt">2)当<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image008.wmz" title=""></v:imagedata></v:shape></SUB>为偶数时,有<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image116.wmz" title=""></v:imagedata></v:shape></SUB>,考察前<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image118.wmz" title=""></v:imagedata></v:shape></SUB>场没参赛队的赛程,由于</P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image120.wmz" title=""></v:imagedata></v:shape></SUB>,</P><P>同理可得前<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image118.wmz" title=""></v:imagedata></v:shape></SUB>场没有参赛的队所进行的比赛也与比赛的单循环规则相矛盾.</P><P 21pt">综合1)和2)可得,</P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image123.wmz" title=""></v:imagedata></v:shape></SUB>.</P><P>  为了证明<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image090.wmz" title=""></v:imagedata></v:shape></SUB>,我们考察最极端的情形,即有一个队<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image126.wmz" title=""></v:imagedata></v:shape></SUB>在第一场和最后一场都有参赛,这样间隔的场次数总和也才可能为最多,注意到</P><P center" align=center><B><SUB><v:shape><v:imagedata src="./mathmodel1.files/image128.wmz" title=""></v:imagedata></v:shape></SUB><p></p></B></P><P>于是我们有</P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image090.wmz" title=""></v:imagedata></v:shape></SUB>.</P><P>                                    </P><P>  我们将每个参赛队的赛程安排视为一次博弈,对每个参赛队来说,他们的最优战略是希望自己的间隔场次数在<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image131.wmz" title=""></v:imagedata></v:shape></SUB>和<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image133.wmz" title=""></v:imagedata></v:shape></SUB>之间,其赛程安排的均衡解便是能达到这样上下限确界的赛程.</P><P center" align=center><B normal"> <p></p></B></P><P><B normal">4  赛程均衡解的编排<p></p></B></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"> <p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">利用前面所建立的模型,我们将赛程的安排转化为对邻接矩阵的编排,具体方法如下:<p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">1)先假定前<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image135.wmz" title=""></v:imagedata></v:shape></SUB>场比赛的对阵,即确定出赛程邻接矩阵的前<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image135.wmz" title=""></v:imagedata></v:shape></SUB>列;<p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">2)下一场参赛的队必须是一个已连续间隔了<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image138.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image008.wmz" title=""></v:imagedata></v:shape></SUB>为奇数)或<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image141.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image008.wmz" title=""></v:imagedata></v:shape></SUB>为偶数)场比赛的队和另一个已连续间隔了<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image144.wmz" title=""></v:imagedata></v:shape></SUB>场比赛的队.<p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image146.wmz" title=""></v:imagedata></v:shape></SUB>时,由定理1可知,<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image148.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image150.wmz" title=""></v:imagedata></v:shape></SUB>,<p></p></P><P>我们希望能编排出一个间隔场次数最大值为2、最小值为1的赛程.<p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">不妨假设第1场比赛的是1和5 ,由于每2场比赛之间有间隔,因此第二场比赛只能是2,3,4中的任意2个队,不妨设为2和3,这样第3场比赛就只能是4和1或者4和5,不妨设为4和5,于是我们得到该赛程邻接矩阵<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image152.wmz" title=""></v:imagedata></v:shape></SUB>的前3列:</P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image154.wmz" title=""></v:imagedata></v:shape></SUB></P><P>由此类推,第<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image156.wmz" title=""></v:imagedata></v:shape></SUB>列中为1的元素在第<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image158.wmz" title=""></v:imagedata></v:shape></SUB>列中的对应行元素必须为0,第<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image160.wmz" title=""></v:imagedata></v:shape></SUB>列中为0的元素在第<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image162.wmz" title=""></v:imagedata></v:shape></SUB>列中的对应行元素根据间隔场次数至少为1且不超过2来选取为1或0,于是我们得到邻接矩阵<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image152.wmz" title=""></v:imagedata></v:shape></SUB>:</P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image165.wmz" title=""></v:imagedata></v:shape></SUB></P><P>即赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image167.wmz" title=""></v:imagedata></v:shape></SUB>,分布情况如表2所示:</P><P char; TEXT-ALIGN: center; mso-layout-grid-align: none" align=center> <p></p></P><P char; TEXT-ALIGN: center; mso-layout-grid-align: none" align=center>表2  <SUB><v:shape><v:imagedata src="./mathmodel1.files/image146.wmz" title=""></v:imagedata></v:shape></SUB>情形的一个均衡解</P><DIV align=center><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 106.65pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-alt: solid windowtext .5pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 24.4pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid" vAlign=top width=33><P center" align=center>队</P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 108pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=144><P center" align=center>1   2   3   4   5</P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 133.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=178><P center" align=center>每2场比赛间隔的场次数</P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 24.4pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=33 rowSpan=5><P center" align=center>1</P><P center" align=center>2</P><P center" align=center>3</P><P center" align=center>4</P><P center" align=center>5</P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 108pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=144 rowSpan=5><P center" align=center>X   4   7   10  1</P><P 21pt; TEXT-ALIGN: center; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt" align=center>X   2   8   6</P><P center" align=center>        X   5   9</P><P 63pt; TEXT-ALIGN: center; mso-char-indent-count: 6.0; mso-char-indent-size: 10.5pt" align=center>X   3</P><P 84pt; TEXT-ALIGN: center; mso-char-indent-count: 8.0; mso-char-indent-size: 10.5pt" align=center>X</P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 133.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=178><P center" align=center>2,2,2</P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 133.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=178><P center" align=center>1,1,1</P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 133.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=178><P center" align=center>2,1,1</P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 133.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=178><P center" align=center>1,2,1</P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 133.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=178><P center" align=center>1,2,2</P></TD></TR></TABLE></DIV><P>    上述方法编制邻接矩阵的关键在于,对2个已连续间隔了<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image144.wmz" title=""></v:imagedata></v:shape></SUB>场比赛的队取<FONT face="Times New Roman">0</FONT>或<FONT face="Times New Roman">1</FONT>的判别,当<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image008.wmz" title=""></v:imagedata></v:shape></SUB>值较大时,操作不当很难得到那样的均衡解,利用计算机编程是解决这一问题的</P>
 楼主| 发表于 2004-7-24 07:48:58 | 显示全部楼层
<FONT face=宋体>最有效方法之一,下面我们利用图论方法</FONT><SUP>[1]</SUP>、借助几何图形来完善我们的编排.< 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image172.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image174.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><><v:group><v:group><vval></vval><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2323"></v:textbox></v:shape><v:shapetype><v:path connecttype="custom" gradientshapeok="t" textboxrect="3163,3163,18437,18437" connectlocs="10800,0;3163,3163;0,10800;3163,18437;10800,21600;18437,18437;21600,10800;18437,3163"></v:path></v:shapetype><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2327"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2328"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2329"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2330"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2331"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image184.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 6.843pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2340"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image185.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2341"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image186.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2342"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image187.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.437pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2343"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2344"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2345"></v:textbox></v:shape><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image189.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 7.062pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2758"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:group><v:group><v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2085"></v:textbox></v:shape><vval></v:oval><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2218"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2219"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2220"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2221"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2222"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2233"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image192.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2234"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image193.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 7.625pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2236"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2237"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image194.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2238"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2250"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image195.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 6.843pt; WIDTH: 5.562pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2210"></v:textbox></v:shape></v:group>    1)如图1所示,将队1视为圆的中心,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的2个队,以竖直线为开始,横线按从上至下的次序编排,得第一轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image199.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P>< 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt">2)将1不动,3换至2的位置,其它点随3逆时针换位使图1变为图2,从而得第二轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image201.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P 21pt">  注:也可从4开始按顺时针方向换位.<p></p></P><P 21pt">3)按上述方法依次在已得图的基础上换位即可得到整个赛程.<p></p></P><P 26.25pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image203.wmz" title=""></v:imagedata></v:shape></SUB>时按上述方法可得一个赛程:<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image205.wmz" title=""></v:imagedata></v:shape></SUB><p></p></P><P center" align=center> <p></p></P><P>分布情况如表3所示:    <p></p></P><P> <p></p></P><P center" align=center>表3  <SUB><v:shape><v:imagedata src="./mathmodel1.files/image207.wmz" title=""></v:imagedata></v:shape></SUB>情形均衡解的场次分布<p></p></P><DIV align=center><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 14.4pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-alt: solid windowtext .5pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid" vAlign=top width=63><P center" align=center>队<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>间隔的场次数<p></p></P></TD></TR><TR 129.5pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=63><P center" align=center>1<p></p></P><P center" align=center>2<p></p></P><P center" align=center>3<p></p></P><P center" align=center>4<p></p></P><P center" align=center>5<p></p></P><P center" align=center>6<p></p></P><P center" align=center>7<p></p></P><P center" align=center>8<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>3,3,3,3,3,3<p></p></P><P center" align=center>4,4,4,3,2,2<p></p></P><P center" align=center>2,4,4,4,3,2<p></p></P><P center" align=center>4,4,3,2,2,2<p></p></P><P center" align=center>2,2,4,4,4,3<p></p></P><P center" align=center>4,3,2,2,2,4<p></p></P><P center" align=center>2,2,2,4,4,4<p></p></P><P center" align=center>3,2,2,2,4,4<p></p></P></TD></TR></TABLE></DIV><P 309.0pt">                                                           <p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image209.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image211.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">1)如图3所示,让圆内的点1表示队1,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的两个队,以1与上顶点(即2的位置)的连线为开始,然后是横线按从上至下的次序,最后以竖直线(即2、<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image215.wmz" title=""></v:imagedata></v:shape></SUB>位置的连线)结束,得第一轮的赛程<p></p></P><P center" align=center> </P>
 楼主| 发表于 2004-7-24 07:48:59 | 显示全部楼层
<FONT face=宋体>最有效方法之一,下面我们利用图论方法</FONT><SUP>[1]</SUP>、借助几何图形来完善我们的编排.< 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image172.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image174.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><><v:group><v:group><vval></vval><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2323"></v:textbox></v:shape><v:shapetype><v:path connecttype="custom" gradientshapeok="t" textboxrect="3163,3163,18437,18437" connectlocs="10800,0;3163,3163;0,10800;3163,18437;10800,21600;18437,18437;21600,10800;18437,3163"></v:path></v:shapetype><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2327"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2328"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2329"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2330"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2331"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image184.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 6.843pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2340"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image185.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2341"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image186.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2342"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image187.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.437pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2343"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2344"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2345"></v:textbox></v:shape><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image189.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 7.062pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2758"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:group><v:group><v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2085"></v:textbox></v:shape><vval></v:oval><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2218"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2219"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2220"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2221"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2222"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2233"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image192.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2234"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image193.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 7.625pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2236"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2237"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image194.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2238"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2250"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image195.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 6.843pt; WIDTH: 5.562pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2210"></v:textbox></v:shape></v:group>    1)如图1所示,将队1视为圆的中心,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的2个队,以竖直线为开始,横线按从上至下的次序编排,得第一轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image199.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P>< 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt">2)将1不动,3换至2的位置,其它点随3逆时针换位使图1变为图2,从而得第二轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image201.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P 21pt">  注:也可从4开始按顺时针方向换位.<p></p></P><P 21pt">3)按上述方法依次在已得图的基础上换位即可得到整个赛程.<p></p></P><P 26.25pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image203.wmz" title=""></v:imagedata></v:shape></SUB>时按上述方法可得一个赛程:<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image205.wmz" title=""></v:imagedata></v:shape></SUB><p></p></P><P center" align=center> <p></p></P><P>分布情况如表3所示:    <p></p></P><P> <p></p></P><P center" align=center>表3  <SUB><v:shape><v:imagedata src="./mathmodel1.files/image207.wmz" title=""></v:imagedata></v:shape></SUB>情形均衡解的场次分布<p></p></P><DIV align=center><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 14.4pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-alt: solid windowtext .5pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid" vAlign=top width=63><P center" align=center>队<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>间隔的场次数<p></p></P></TD></TR><TR 129.5pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=63><P center" align=center>1<p></p></P><P center" align=center>2<p></p></P><P center" align=center>3<p></p></P><P center" align=center>4<p></p></P><P center" align=center>5<p></p></P><P center" align=center>6<p></p></P><P center" align=center>7<p></p></P><P center" align=center>8<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>3,3,3,3,3,3<p></p></P><P center" align=center>4,4,4,3,2,2<p></p></P><P center" align=center>2,4,4,4,3,2<p></p></P><P center" align=center>4,4,3,2,2,2<p></p></P><P center" align=center>2,2,4,4,4,3<p></p></P><P center" align=center>4,3,2,2,2,4<p></p></P><P center" align=center>2,2,2,4,4,4<p></p></P><P center" align=center>3,2,2,2,4,4<p></p></P></TD></TR></TABLE></DIV><P 309.0pt">                                                           <p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image209.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image211.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">1)如图3所示,让圆内的点1表示队1,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的两个队,以1与上顶点(即2的位置)的连线为开始,然后是横线按从上至下的次序,最后以竖直线(即2、<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image215.wmz" title=""></v:imagedata></v:shape></SUB>位置的连线)结束,得第一轮的赛程<p></p></P><P center" align=center> </P>
 楼主| 发表于 2004-7-24 07:49:01 | 显示全部楼层
<FONT face=宋体>最有效方法之一,下面我们利用图论方法</FONT><SUP>[1]</SUP>、借助几何图形来完善我们的编排.< 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image172.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image174.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><><v:group><v:group><vval></vval><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2323"></v:textbox></v:shape><v:shapetype><v:path connecttype="custom" gradientshapeok="t" textboxrect="3163,3163,18437,18437" connectlocs="10800,0;3163,3163;0,10800;3163,18437;10800,21600;18437,18437;21600,10800;18437,3163"></v:path></v:shapetype><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2327"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2328"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2329"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2330"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2331"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image184.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 6.843pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2340"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image185.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2341"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image186.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2342"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image187.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.437pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2343"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2344"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2345"></v:textbox></v:shape><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image189.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 7.062pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2758"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:group><v:group><v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2085"></v:textbox></v:shape><vval></v:oval><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2218"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2219"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2220"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2221"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2222"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2233"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image192.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2234"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image193.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 7.625pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2236"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2237"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image194.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2238"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2250"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image195.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 6.843pt; WIDTH: 5.562pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2210"></v:textbox></v:shape></v:group>    1)如图1所示,将队1视为圆的中心,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的2个队,以竖直线为开始,横线按从上至下的次序编排,得第一轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image199.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P>< 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt">2)将1不动,3换至2的位置,其它点随3逆时针换位使图1变为图2,从而得第二轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image201.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P 21pt">  注:也可从4开始按顺时针方向换位.<p></p></P><P 21pt">3)按上述方法依次在已得图的基础上换位即可得到整个赛程.<p></p></P><P 26.25pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image203.wmz" title=""></v:imagedata></v:shape></SUB>时按上述方法可得一个赛程:<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image205.wmz" title=""></v:imagedata></v:shape></SUB><p></p></P><P center" align=center> <p></p></P><P>分布情况如表3所示:    <p></p></P><P> <p></p></P><P center" align=center>表3  <SUB><v:shape><v:imagedata src="./mathmodel1.files/image207.wmz" title=""></v:imagedata></v:shape></SUB>情形均衡解的场次分布<p></p></P><DIV align=center><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 14.4pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-alt: solid windowtext .5pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid" vAlign=top width=63><P center" align=center>队<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>间隔的场次数<p></p></P></TD></TR><TR 129.5pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=63><P center" align=center>1<p></p></P><P center" align=center>2<p></p></P><P center" align=center>3<p></p></P><P center" align=center>4<p></p></P><P center" align=center>5<p></p></P><P center" align=center>6<p></p></P><P center" align=center>7<p></p></P><P center" align=center>8<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>3,3,3,3,3,3<p></p></P><P center" align=center>4,4,4,3,2,2<p></p></P><P center" align=center>2,4,4,4,3,2<p></p></P><P center" align=center>4,4,3,2,2,2<p></p></P><P center" align=center>2,2,4,4,4,3<p></p></P><P center" align=center>4,3,2,2,2,4<p></p></P><P center" align=center>2,2,2,4,4,4<p></p></P><P center" align=center>3,2,2,2,4,4<p></p></P></TD></TR></TABLE></DIV><P 309.0pt">                                                           <p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image209.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image211.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">1)如图3所示,让圆内的点1表示队1,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的两个队,以1与上顶点(即2的位置)的连线为开始,然后是横线按从上至下的次序,最后以竖直线(即2、<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image215.wmz" title=""></v:imagedata></v:shape></SUB>位置的连线)结束,得第一轮的赛程<p></p></P><P center" align=center> </P>
 楼主| 发表于 2004-7-24 07:49:01 | 显示全部楼层
<FONT face=宋体>最有效方法之一,下面我们利用图论方法</FONT><SUP>[1]</SUP>、借助几何图形来完善我们的编排.< 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image172.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image174.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><><v:group><v:group><vval></vval><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2323"></v:textbox></v:shape><v:shapetype><v:path connecttype="custom" gradientshapeok="t" textboxrect="3163,3163,18437,18437" connectlocs="10800,0;3163,3163;0,10800;3163,18437;10800,21600;18437,18437;21600,10800;18437,3163"></v:path></v:shapetype><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2327"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2328"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2329"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2330"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2331"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image184.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 6.843pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2340"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image185.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2341"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image186.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2342"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image187.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.437pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2343"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2344"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2345"></v:textbox></v:shape><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image189.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 7.062pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2758"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:group><v:group><v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2085"></v:textbox></v:shape><vval></v:oval><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2218"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2219"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2220"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2221"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2222"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2233"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image192.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2234"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image193.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 7.625pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2236"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2237"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image194.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2238"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2250"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image195.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 6.843pt; WIDTH: 5.562pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2210"></v:textbox></v:shape></v:group>    1)如图1所示,将队1视为圆的中心,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的2个队,以竖直线为开始,横线按从上至下的次序编排,得第一轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image199.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P>< 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt">2)将1不动,3换至2的位置,其它点随3逆时针换位使图1变为图2,从而得第二轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image201.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P 21pt">  注:也可从4开始按顺时针方向换位.<p></p></P><P 21pt">3)按上述方法依次在已得图的基础上换位即可得到整个赛程.<p></p></P><P 26.25pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image203.wmz" title=""></v:imagedata></v:shape></SUB>时按上述方法可得一个赛程:<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image205.wmz" title=""></v:imagedata></v:shape></SUB><p></p></P><P center" align=center> <p></p></P><P>分布情况如表3所示:    <p></p></P><P> <p></p></P><P center" align=center>表3  <SUB><v:shape><v:imagedata src="./mathmodel1.files/image207.wmz" title=""></v:imagedata></v:shape></SUB>情形均衡解的场次分布<p></p></P><DIV align=center><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 14.4pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-alt: solid windowtext .5pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid" vAlign=top width=63><P center" align=center>队<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>间隔的场次数<p></p></P></TD></TR><TR 129.5pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=63><P center" align=center>1<p></p></P><P center" align=center>2<p></p></P><P center" align=center>3<p></p></P><P center" align=center>4<p></p></P><P center" align=center>5<p></p></P><P center" align=center>6<p></p></P><P center" align=center>7<p></p></P><P center" align=center>8<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>3,3,3,3,3,3<p></p></P><P center" align=center>4,4,4,3,2,2<p></p></P><P center" align=center>2,4,4,4,3,2<p></p></P><P center" align=center>4,4,3,2,2,2<p></p></P><P center" align=center>2,2,4,4,4,3<p></p></P><P center" align=center>4,3,2,2,2,4<p></p></P><P center" align=center>2,2,2,4,4,4<p></p></P><P center" align=center>3,2,2,2,4,4<p></p></P></TD></TR></TABLE></DIV><P 309.0pt">                                                           <p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image209.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image211.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">1)如图3所示,让圆内的点1表示队1,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的两个队,以1与上顶点(即2的位置)的连线为开始,然后是横线按从上至下的次序,最后以竖直线(即2、<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image215.wmz" title=""></v:imagedata></v:shape></SUB>位置的连线)结束,得第一轮的赛程<p></p></P><P center" align=center> </P>
 楼主| 发表于 2004-7-24 07:50:57 | 显示全部楼层
<v:shape> <v:imagedata src="./mathmodel1.files/image199.wmz" title=""></v:imagedata></v:shape>.<p></p>< 21pt"> <p></p></P>< 21pt"> <p></p></P>< 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt">2)将1不动,3换至2的位置,其它点随3逆时针换位使图1变为图2,从而得第二轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image201.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P 21pt">  注:也可从4开始按顺时针方向换位.<p></p></P><P 21pt">3)按上述方法依次在已得图的基础上换位即可得到整个赛程.<p></p></P><P 26.25pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image203.wmz" title=""></v:imagedata></v:shape></SUB>时按上述方法可得一个赛程:<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image205.wmz" title=""></v:imagedata></v:shape></SUB><p></p></P><P center" align=center> <p></p></P><P>分布情况如表3所示:    <p></p></P><P> <p></p></P><P center" align=center>表3  <SUB><v:shape><v:imagedata src="./mathmodel1.files/image207.wmz" title=""></v:imagedata></v:shape></SUB>情形均衡解的场次分布<p></p></P><DIV align=center><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 14.4pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-alt: solid windowtext .5pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid" vAlign=top width=63><P center" align=center>队<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>间隔的场次数<p></p></P></TD></TR><TR 129.5pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=63><P center" align=center>1<p></p></P><P center" align=center>2<p></p></P><P center" align=center>3<p></p></P><P center" align=center>4<p></p></P><P center" align=center>5<p></p></P><P center" align=center>6<p></p></P><P center" align=center>7<p></p></P><P center" align=center>8<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>3,3,3,3,3,3<p></p></P><P center" align=center>4,4,4,3,2,2<p></p></P><P center" align=center>2,4,4,4,3,2<p></p></P><P center" align=center>4,4,3,2,2,2<p></p></P><P center" align=center>2,2,4,4,4,3<p></p></P><P center" align=center>4,3,2,2,2,4<p></p></P><P center" align=center>2,2,2,4,4,4<p></p></P><P center" align=center>3,2,2,2,4,4<p></p></P></TD></TR></TABLE></DIV>
 楼主| 发表于 2004-7-24 07:51:32 | 显示全部楼层
< 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image209.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image211.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P>< 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">1)如图3所示,让圆内的点1表示队1,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的两个队,以1与上顶点(即2的位置)的连线为开始,然后是横线按从上至下的次序,最后以竖直线(即2、<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image215.wmz" title=""></v:imagedata></v:shape></SUB>位置的连线)结束,得第一轮的赛程<p></p></P>< center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image217.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P 20pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.0pt"><v:group><v:group><v:group><vval></vval><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.406pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2529"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2530"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2531"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.5pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2532"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2540"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.562pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2541"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image219.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.5pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 7.562pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2542"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image220.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2543"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image221.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2544"></v:textbox></v:shape><v:line></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image222.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 6.843pt; WIDTH: 4.812pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2551"></v:textbox></v:shape><v:line></v:line><v:shape><v:imagedata src="./mathmodel1.files/image223.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.5pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2554"></v:textbox></v:shape><v:group><v:line><v:stroke endarrowlength="long" endarrowwidth="narrow" endarrow="block"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image224.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.406pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 8.406pt; mso-next-textbox: #_x0000_s2557"></v:textbox></v:shape></v:group></v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2525"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2528"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2545"></v:textbox></v:shape></v:group><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape></v:group><v:group><v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2601"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2621"></v:textbox></v:shape><v:group><v:group><vval></v:oval><v:line></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line></v:line><v:group><v:line><v:stroke endarrowlength="long" endarrowwidth="narrow" endarrow="block"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image224.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 8.406pt; mso-next-textbox: #_x0000_s2633"></v:textbox></v:shape></v:group><v:shape><v:imagedata src="./mathmodel1.files/image225.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.437pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 5.562pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2764"></v:textbox></v:shape></v:group><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.406pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2605"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2606"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2607"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.5pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2608"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image226.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.656pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2616"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image227.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.562pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2617"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image219.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.5pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 7.562pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2618"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2619"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image221.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2620"></v:textbox></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.5pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2630"></v:textbox></v:shape></v:group></v:group><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2604"></v:textbox></v:shape></v:group> <p></p> <P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"> <p></p></P><P 21pt"> <p></p></P><BR vglayout" clear=all><P 21pt">                                          <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt">2)在图3中,让1不动,上半圆周左边弧段上的每一个点(如果存在的话也包括<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image224.wmz" title=""></v:imagedata></v:shape></SUB>轴与圆周的交点)依次按左半圆回路<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image231.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P>顺时针换位至2的位置,左半圆回路上的其它点也随着顺时针换位,但右半圆弧上除上下顶点外的其它点均不动.然后按(1)中方式对应点相连,得第二部份赛程:<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image233.wmz" title=""></v:imagedata></v:shape></SUB>(如图4).<p></p></P><P 21pt"><v:group><v:group><v:oval></v:oval><v:group><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2483"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2484"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2485"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image184.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2486"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2494"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.75pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2495"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image235.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2496"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.281pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2497"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image236.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2498"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image237.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.781pt; LEFT: auto; MARGIN-LEFT: 6.843pt; WIDTH: 4.031pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2505"></v:textbox></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image223.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2508"></v:textbox></v:shape><v:group><v:line></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line></v:line><v:group><v:line><v:stroke endarrowlength="long" endarrowwidth="narrow" endarrow="block"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image224.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 8.406pt; mso-next-textbox: #_x0000_s2511"></v:textbox></v:shape></v:group></v:group></v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2479"></v:textbox></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2482"></v:textbox></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2499"></v:textbox></v:shape></v:group><v:shape></v:shape><w:wrap type="square"></w:wrap></v:group>3)在图3中,让1不动,上半圆周右边弧段上的每一个点(如果存在的话也包括<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image224.wmz" title=""></v:imagedata></v:shape></SUB>轴与圆周的交点)依次按右半圆回路<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image240.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P>逆时针换位至2的位置,右半圆回路上的其它点也随着换位,但左半圆弧上除上下顶点外的其它点均不动.然后按(1)中方式对应点相连,且从后向前编排,得第四部份赛程:<p></p></P>
 楼主| 发表于 2004-7-24 07:52:00 | 显示全部楼层
< center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image242.wmz" title=""></v:imagedata></v:shape></SUB>(如图5).<p></p></P>< 21pt; TEXT-ALIGN: center" align=center>4)在图3中,以1和下顶点(即<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image244.wmz" title=""></v:imagedata></v:shape></SUB>的位置)的连线开始向左、右两边扩展分别得赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image246.wmz" title=""></v:imagedata></v:shape></SUB>和<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image248.wmz" title=""></v:imagedata></v:shape></SUB>.每个队<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image156.wmz" title=""></v:imagedata></v:shape></SUB>在该轮的编排方法是:让<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image251.wmz" title=""></v:imagedata></v:shape></SUB>不动,下半圆周左(右)边弧段上的其它点(如果存在的话也包括<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image224.wmz" title=""></v:imagedata></v:shape></SUB>轴与圆周的交点)沿下半圆回路逆(顺)时针换位,上半圆周上的其它点不动,先以1,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image251.wmz" title=""></v:imagedata></v:shape></SUB>相连,然后按下半圆回路换位方向和换位前距点<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image251.wmz" title=""></v:imagedata></v:shape></SUB>由近至远的点的次序依次横竖相连,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image246.wmz" title=""></v:imagedata></v:shape></SUB>按原序编排,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image248.wmz" title=""></v:imagedata></v:shape></SUB>由右向左编排,于是可得第三部分赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image258.wmz" title=""></v:imagedata></v:shape></SUB>,<p></p></P><>从而可求得整个赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image260.wmz" title=""></v:imagedata></v:shape></SUB>.</P><P 21pt; tab-stops: 309.0pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image262.wmz" title=""></v:imagedata></v:shape></SUB>时,由图6按上述方法编排,得<p></p></P><P 21.75pt; tab-stops: 309.0pt">1)<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image264.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image266.wmz" title=""></v:imagedata></v:shape></SUB>,</P><P 42.75pt; tab-stops: 309.0pt; mso-char-indent-count: 4.07; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image268.wmz" title=""></v:imagedata></v:shape></SUB>;</P>
 楼主| 发表于 2004-7-24 07:52:23 | 显示全部楼层
< center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image242.wmz" title=""></v:imagedata></v:shape></SUB>(如图5).<p></p></P>< 21pt; TEXT-ALIGN: center" align=center>4)在图3中,以1和下顶点(即<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image244.wmz" title=""></v:imagedata></v:shape></SUB>的位置)的连线开始向左、右两边扩展分别得赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image246.wmz" title=""></v:imagedata></v:shape></SUB>和<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image248.wmz" title=""></v:imagedata></v:shape></SUB>.每个队<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image156.wmz" title=""></v:imagedata></v:shape></SUB>在该轮的编排方法是:让<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image251.wmz" title=""></v:imagedata></v:shape></SUB>不动,下半圆周左(右)边弧段上的其它点(如果存在的话也包括<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image224.wmz" title=""></v:imagedata></v:shape></SUB>轴与圆周的交点)沿下半圆回路逆(顺)时针换位,上半圆周上的其它点不动,先以1,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image251.wmz" title=""></v:imagedata></v:shape></SUB>相连,然后按下半圆回路换位方向和换位前距点<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image251.wmz" title=""></v:imagedata></v:shape></SUB>由近至远的点的次序依次横竖相连,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image246.wmz" title=""></v:imagedata></v:shape></SUB>按原序编排,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image248.wmz" title=""></v:imagedata></v:shape></SUB>由右向左编排,于是可得第三部分赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image258.wmz" title=""></v:imagedata></v:shape></SUB>,<p></p></P><>从而可求得整个赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image260.wmz" title=""></v:imagedata></v:shape></SUB>.</P><P 21pt; tab-stops: 309.0pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image262.wmz" title=""></v:imagedata></v:shape></SUB>时,由图6按上述方法编排,得<p></p></P><P 21.75pt; tab-stops: 309.0pt">1)<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image264.wmz" title=""></v:imagedata></v:shape></SUB>,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image266.wmz" title=""></v:imagedata></v:shape></SUB>,</P><P 42.75pt; tab-stops: 309.0pt; mso-char-indent-count: 4.07; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image268.wmz" title=""></v:imagedata></v:shape></SUB>;</P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-28 00:49 , Processed in 0.072410 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表