<FONT face=宋体>最有效方法之一,下面我们利用图论方法</FONT><SUP>[1]</SUP>、借助几何图形来完善我们的编排.< 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image172.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image174.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><><v:group><v:group><vval></vval><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2323"></v:textbox></v:shape><v:shapetype><v:path connecttype="custom" gradientshapeok="t" textboxrect="3163,3163,18437,18437" connectlocs="10800,0;3163,3163;0,10800;3163,18437;10800,21600;18437,18437;21600,10800;18437,3163"></v:path></v:shapetype><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2327"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2328"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2329"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.343pt; LEFT: auto; MARGIN-LEFT: 7.437pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2330"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2331"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image184.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 6.843pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2340"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image185.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2341"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image186.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2342"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image187.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.437pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2343"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2344"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2345"></v:textbox></v:shape><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image189.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 7pt; WIDTH: 7.062pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2758"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:group><v:group><v:group><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.25pt; mso-next-textbox: #_x0000_s2085"></v:textbox></v:shape><vval></v:oval><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image179.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2218"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image180.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2219"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image181.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 4.406pt; mso-next-textbox: #_x0000_s2220"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image182.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 3.562pt; mso-next-textbox: #_x0000_s2221"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image183.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.687pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2222"></v:textbox></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image191.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2233"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image192.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.593pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 8.312pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2234"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image193.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; WIDTH: 7.625pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2236"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image188.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.843pt; LEFT: auto; MARGIN-LEFT: 7.187pt; TOP: auto; HEIGHT: 4.437pt; mso-next-textbox: #_x0000_s2237"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image194.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 6.937pt; WIDTH: 6.875pt; TOP: auto; HEIGHT: 4.468pt; mso-next-textbox: #_x0000_s2238"></v:textbox></v:shape><v:shape><v:imagedata src="./mathmodel1.files/image178.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.531pt; LEFT: auto; MARGIN-LEFT: 7.531pt; TOP: auto; HEIGHT: 5.281pt; mso-next-textbox: #_x0000_s2250"></v:textbox></v:shape></v:group><v:line></v:line></v:group><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:line><v:stroke dashstyle="shortDot" endcap="round"></v:stroke></v:line><v:shape><v:imagedata src="./mathmodel1.files/image195.wmz" title=""></v:imagedata><v:textbox style="MARGIN-TOP: 3.468pt; LEFT: auto; MARGIN-LEFT: 6.843pt; WIDTH: 5.562pt; TOP: auto; HEIGHT: 7.125pt; mso-next-textbox: #_x0000_s2210"></v:textbox></v:shape></v:group> 1)如图1所示,将队1视为圆的中心,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的2个队,以竖直线为开始,横线按从上至下的次序编排,得第一轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image199.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P>< 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt"> <p></p></P><P 21pt">2)将1不动,3换至2的位置,其它点随3逆时针换位使图1变为图2,从而得第二轮的赛程<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image201.wmz" title=""></v:imagedata></v:shape></SUB>.<p></p></P><P 21pt"> 注:也可从4开始按顺时针方向换位.<p></p></P><P 21pt">3)按上述方法依次在已得图的基础上换位即可得到整个赛程.<p></p></P><P 26.25pt">例如,<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image203.wmz" title=""></v:imagedata></v:shape></SUB>时按上述方法可得一个赛程:<p></p></P><P center" align=center><SUB><v:shape><v:imagedata src="./mathmodel1.files/image205.wmz" title=""></v:imagedata></v:shape></SUB><p></p></P><P center" align=center> <p></p></P><P>分布情况如表3所示: <p></p></P><P> <p></p></P><P center" align=center>表3 <SUB><v:shape><v:imagedata src="./mathmodel1.files/image207.wmz" title=""></v:imagedata></v:shape></SUB>情形均衡解的场次分布<p></p></P><DIV align=center><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 14.4pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-border-alt: solid windowtext .5pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid" vAlign=top width=63><P center" align=center>队<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>间隔的场次数<p></p></P></TD></TR><TR 129.5pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 47.5pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=63><P center" align=center>1<p></p></P><P center" align=center>2<p></p></P><P center" align=center>3<p></p></P><P center" align=center>4<p></p></P><P center" align=center>5<p></p></P><P center" align=center>6<p></p></P><P center" align=center>7<p></p></P><P center" align=center>8<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: medium none; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: medium none; WIDTH: 156.75pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 129.5pt; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=209><P center" align=center>3,3,3,3,3,3<p></p></P><P center" align=center>4,4,4,3,2,2<p></p></P><P center" align=center>2,4,4,4,3,2<p></p></P><P center" align=center>4,4,3,2,2,2<p></p></P><P center" align=center>2,2,4,4,4,3<p></p></P><P center" align=center>4,3,2,2,2,4<p></p></P><P center" align=center>2,2,2,4,4,4<p></p></P><P center" align=center>3,2,2,2,4,4<p></p></P></TD></TR></TABLE></DIV><P 309.0pt"> <p></p></P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><SUB><v:shape><v:imagedata src="./mathmodel1.files/image209.wmz" title=""></v:imagedata></v:shape></SUB>.<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image211.wmz" title=""></v:imagedata></v:shape></SUB>(<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image176.wmz" title=""></v:imagedata></v:shape></SUB>为正整数)的情形.</P><P 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">1)如图3所示,让圆内的点1表示队1,其余<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image197.wmz" title=""></v:imagedata></v:shape></SUB>个队对称地分布于圆周,标有连线的两点表示该轮对阵的两个队,以1与上顶点(即2的位置)的连线为开始,然后是横线按从上至下的次序,最后以竖直线(即2、<SUB><v:shape> <v:imagedata src="./mathmodel1.files/image215.wmz" title=""></v:imagedata></v:shape></SUB>位置的连线)结束,得第一轮的赛程<p></p></P><P center" align=center> </P> |