<>任意不小于<FONT face="Times New Roman">6</FONT>的偶数,都可以表示为二个奇素数之和的证明<FONT face="Times New Roman"> <BR></FONT> 即“哥德巴赫猜想”的证明<FONT face="Times New Roman"> <BR></FONT> 已知不小于<FONT face="Times New Roman">6</FONT>且不大于<FONT face="Times New Roman">N</FONT>的偶数都可以表示为二个奇素数之和。<FONT face="Times New Roman"> <BR></FONT> 根据数学归纳法:如果能证明<FONT face="Times New Roman">N+2</FONT>可以表示为二个奇素数之和,则“哥德巴赫猜想”成立。<FONT face="Times New Roman">(</FONT>在证明过程中,唯一偶素数<FONT face="Times New Roman">2</FONT>除外<FONT face="Times New Roman">)</FONT>。<FONT face="Times New Roman"> <BR></FONT> 设不大于<FONT face="Times New Roman">N+2</FONT>的奇素数集<FONT face="Times New Roman">=</FONT>{<FONT face="Times New Roman">3</FONT>、<FONT face="Times New Roman">5</FONT>、<FONT face="Times New Roman">7</FONT>……<FONT face="Times New Roman">n-1</FONT>,<FONT face="Times New Roman">Pn</FONT>}<FONT face="Times New Roman"> <BR></FONT> 令<FONT face="Times New Roman">N+2 =N1 +N2 +N3 </FONT>;<FONT face="Times New Roman">N</FONT>-<FONT face="Times New Roman">4 </FONT>≥<FONT face="Times New Roman"> N1 </FONT>≥<FONT face="Times New Roman"> 6 </FONT>;<FONT face="Times New Roman">N</FONT>-<FONT face="Times New Roman">4 </FONT>≥<FONT face="Times New Roman"> N2 </FONT>≥<FONT face="Times New Roman"> 6</FONT>;<FONT face="Times New Roman"> <BR></FONT> <FONT face="Times New Roman">N3</FONT>为任意二个奇素数之差,<FONT face="Times New Roman"> <BR></FONT> 令<FONT face="Times New Roman">N1=PA+PB N2=PC +PD N3=PE</FONT>-<FONT face="Times New Roman">PD</FONT>或<FONT face="Times New Roman">N3=PE</FONT>-<FONT face="Times New Roman">PC </FONT>或<FONT face="Times New Roman">N3=PE</FONT>-<FONT face="Times New Roman">PB </FONT>或<FONT face="Times New Roman">N3=PE</FONT>-<FONT face="Times New Roman">PA <BR></FONT><BR><FONT color=#ff3300>错误如下:</FONT><BR><BR>
<br>
<P>N+2是偶数,N+2=N1+N2+N3,N3是两个奇素数之差,那也应该是偶数,所以N1和N2的奇偶性应该一致才能保证等式左右都为偶数<BR>
<P>那么等式N1=PA+PB N2,如果N2是奇数,N1一定是偶数,如果N2是偶数,N1一定是奇数,这是怎么回事?<BR>
<P>简直就是垃圾!还几年研究呢??</P>