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Secure Communications on the Battlefield? 
Gary Krahn 
 
 

    History  
 
For two days in June 1942, the fate of the U.S. Fleet (rebuilt since Pearl Harbor) 
hung on the meaning of two letters - AF.  Between December 1941 and June 
1942, the Japanese Navy under the command of Admiral Yamamoto had swept 
from one victory to another.  Yamamoto knew it was essential to achieve 
victories in rapid succession.  Given time, America could starve Japan of fuel.  
At Midway he would deal the U.S. Fleet a crushing defeat that would put it 
permanently out of action.  

 
On May 20, 1942 Yamamoto broadcast his plans for the final destruction of the 
U.S. Fleet in a series of orders to his own fleet.  At the same time the U.S. 
Combat Intelligence Unit at Pearl Harbor started to break into the stream of five-
digit code groups that concealed the admiral’s intentions. The projected battle 
began to emerge, however, the when and where remained hidden in mysterious 
letter groups that defied analysis.  The key location was coded: AF.  
 
The U.S. crypto unit employed one of the oldest tricks in the book.  Using a code 
that they knew the Japanese had already broken, they arranged for the U.S. 
Garrison on Midway to broadcast the news that they were short of fresh water.  
Two days later, Yamamoto broadcasts to his fleet, “AF is short of freshwater.” 
 
Admiral Nimitz was now able to get his fleet to Midway and surprise the 
Japanese.  The Americans destroyed all four of the big Japanese aircraft 
carriers that had attacked Pearl Harbor.  As Admiral Nimitz later observed: 
“Midway was a victory of intelligence.” 
 
 

    Introduction 
 

On the battlefield we must have the ability 
to transmit information quickly and 
securely.  Information management is a 
combat multiplier that is critical to 
implementing the principals of maneuver, 
surprise, and initiative on the modern 
battlefield.  Successful military units must 
be able to send information in a disguised 
form so that only the intended recipients 
can remove the disguise and read the 
message.  Whether positioning units, 
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disseminating logistics, or coordinating an attack, secure information is vital for 
military operations.  

 
The Word Cryptography is from the Greek ‘kryptos’ (hidden) and ‘graphein’ (to 
write). The traditional goal of cryptography has been to ensure privacy in 
communication by transforming data to render it unintelligible to all but the 
intended recipient. This can be achieved through the use of an encoding 
scheme that relies on a secret key known only by the sender and intended 
recipient.  The message we want to send is called the plaintext and the 
disguised message is called the ciphertext.  The message may be formed by 
using only the familiar symbols A – Z.   If we don’t include blanks, however, then 
all of the words are run together and the messages are harder to read.  The 
process of converting a plaintext to a ciphertext is called enciphering or 
encryption, and the reverse process is called deciphering.  Suppose the 
information we are to transmit comes from the set of symbols {A, B, C, . . . , Z}.   
Using binary communications we can associate a sequence of 0’s and 1’s with 
each of these symbols.  For example,  

 
    A Õ   00000 

B Õ   10100 
C Õ   00001 
D Õ   01010 
E Õ   10011 
G Õ   11111.  

 
Hence, a 10100 00000 01011 sequence represents the message “BAD.”   In the 
hostile environment of the battlefield we want information to remain secret.  
Furthermore, we want to disguise the message to the enemy; however, we want 
our friendly units to be able to convert the disguised message into its original 
form.  We can represent this process by the following simple model: 

 
           

            Plain Text      Channel        Cipher Text 
Plain Text                            encoder                     decoder                      Plain Text 

  

 CM f →                      MC f → − 1

          
 

An enciphering transformation is a function that takes a plaintext message and 
gives us a ciphertext message.  In other words, it is a mapping  f  from the set M 
of all possible plaintext messages to the set C of all possible ciphertext 
messages.  We can represent this transformation schematically by the diagram:  

MCM  → →
− 1ff , where f –1  is the map for deciphering. 

 
Exercise 0: If the map (f) is not a one-to-one mapping (or function), what 
difficulties may the receiver encounter when using the map f –1  during 
deciphering. 
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Solution:  Since the map (f) is not one-to-one then f –1 is not a function 
and it is possible during deciphering that an enciphered letter is mapped 
to more than one plaintext letter.  Therefore, the receiver may not be 
able to determine with absolute certainty the actual plaintext message. 

   
Modern high-speed communication systems handle 
information in binary form. To disguise or encipher a 
binary message during transmission one could 
randomly change the bits of the message.  An efficient 
technique to encipher is to add, bit by bit modulo 2, a 
random binary sequence, S, to the message, M, 
generating a ciphertext.  The receiver, also knowing 
S, can then add S to the ciphertext bit by bit modulo 2 
to retrieve the original message, M.  This random 
binary sequence S can not be truly random.  It should, 
however, possess properties associated with a random process.  

 
Note: Modulo 2 addition is defined as follows: 1 ⊕  1 = 0; 1 ⊕  0 = 1;  
0 ⊕  1 = 1; and 0 ⊕  0 = 0.  
 

Example 1: Suppose M is the message 10100 00000 01011 (representing the 
word BAD). We define a function  f  from the message set to the cipher set by  

    f (M) = M ⊕  10101 01011 01011. 
 

In other words, f  adds the sequence (or key) S =10101 01011 01011 bit by bit 
modulo 2 to M to form C. 

    10100 00000 01011         ( M ) 
                            ⊕  10101 01011 01011         ( S ) 

00001 01011 00000         ( C ) 
 

The receiver deciphers the ciphertext  C  by adding the key  S  modulo 2 to  C  
to recreate the message  M.  

   00001 01011 00000         ( C ) 
                            ⊕  10101 01011 01011         ( S ) 

10100 00000 01011         ( M ) 
 

If the key, S, is random-looking then the resulting ciphertext, C, tend to be 
random-like.  We may apply the key to many messages throughout some period 
of operations.  Therefore, there is a need for high-speed techniques to generate 
random-like sequences. One of the simplest and most efficient devices for 
generating or modeling deterministic, random looking sequences of 0’s and 1’s 
is the shift-register.  

 
The usefulness of sequences generated by a shift-register depends in large part 
on their randomness properties.  In a sense, no finite sequence is truly random.  
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In particular, no sequence that depends on a few parameters, such as the 
feedback connections of a linear feedback shift-register, can be considered truly 
random.  Solomon W. Golomb introduced the name pseudo-random for periodic 
binary sequences because they satisfy the three randomness properties of 
balance, runs, and correlation.  We will discuss these properties later. 
 

    Feedback Shift-Register Design 
 
A binary shift-register of span n is a collection {w(i): i = 0,1, . . . , n-1} of n-
storage registers each capable of holding a value from the set {0,1}. The 
contents of the  
n-storage registers, the n-tuple (sj, sj+1, . . . , sj+n-1), is denoted as the state of the 
register at time j  for each  j ≥ 0.  An example is shown in Figure 1.  
  w0        w1         w2          w3         wn-2       wn-1 

   1             0         0           1             . . .       1         0 

     Figure 1: n Storage Devices 

There is a feedback rule computed from the contents of the n-storage registers 
called the feedback function (Figure 2).  If the feedback function is   

f (sj, sj + 1, . . . , sj + n - 1) = sj + n = c0sj ⊕  c1sj + 1 ⊕  . . . ⊕  c n – 1 sj + n – 1 = 

,0    ,
1

0

jsc kj

n

k
k ≤+

−

=
∑  

where the coefficients c0, c1, . . . , and c n -1 are 1’s or 0’s, and the summation is 
modulo 2 addition the shift register is called linear. 
 
  w0        w1         w2          w3         wn-2      wn-1 

    1             0         0           1  . . .      1        0 
         c0         c1                    c2                c3                   cn-2           cn-1 

    f (sj, sj + 1, . . . , sj + n - 1) 
   
   Figure 2: Feedback Shift-Register Model 
 
At the pulse of an external clock the content of the storage register wi + 1 is 
shifted into wi  for  i =0, 1,. . . , n-2 and the value of the computed feedback 
function  
f (sj, sj + 1, . . . , sj + n - 1) is shifted into storage register wn-1.  
 
Example 2: Using the above notation, let n = 4, c0 = c1 = 1, c2 = c3 = 0.  Thus,  
sj+4 = sj ⊕  sj+1 modulo 2. The wiring of this linear feedback shift-register (LFSR) is 
       w0        w1                 w2                   w3    
       sj         sj+1                  sj+2                sj+3 

 

      sj+4 = sj ⊕  sj+1 
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          Figure 3: A Linear Feedback Shift-Register Model 
 

Note: the connections from sj+2  and sj+3 are open since c2 = 0 and c3 = 0.  
Successive iterations from the initial configuration in Figure 3 look like: 
 
       w0        w1              w2              w3    
       s0                        s1            s2   s3 

             
         TICK OF THE CLOCK 

       w0        w1                     w2                  w3    
       s1                       s2             s3 s4 

 
         

        TICK OF THE CLOCK 
       w0        w1                   w2                   w3    
        s2                      s3                    s4 s5 

 
The successor of the register fill vector s0, s1, . . . ,  sn-1 is the vector  
s1, s2, . . . , sn, where the value sn is the computed feedback function  
f (s0, s1, . . . , sn-1).  To generate successive states we iterate this procedure. 
With each tick of the clock, the register completes another step through a 
sequence of states. If we set the initial fill of the register to be 0001, such that  
s0 = 0, s1= 0, s2 = 0, and s3 = 1, then the successive states of the register are:  
 

0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 1 
0 0 1 1 
0 1 1 0 
1 1 0 1 
1 0 1 0 
0 1 0 1 
1 0 1 1 
0 1 1 1 
1 1 1 1 
1 1 1 0 
1 1 0 0 
1 0 0 0 
0 0 0 1 

 
For this example, the state sequence of register fills repeats with a period of 15. 
The history of stage w3, which is underlined, is the sequence 
{100110101111000}, periodically repeated.  If the contents of the register are 
initially not all 0’s, the linear shift-register will cycle through all 15 different states 
before repeating itself.  In general, it is possible to construct a span n linear 
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shift-register of the form in Figure 2 that will cycle through all 2n-1 different states 
before repeating itself for every  n ≥ 1.   

 
Associated with each linear feedback shift-register (LFSR) is the characteristic 
polynomial  

    j
n

j
j

n xcxxfxC ∑
−

=
+==

1

0

)()( . 

 
In Example 2 the characteristic polynomial is .14 ++ xx  
 
Exercise 1: Explain why any linear shift-register of span n will generate a 
sequence that is ultimately periodic with a period p ≤ 2n -1.  (Sequences being 
the history of a selected storage register.) 
 

Solution: Each state of the shift register is completely determined by the 
previous state and the feedback function. Since there are only a finite 
number of states, some state must eventually repeat. Working with  
n-stage shift registers with 0’s and 1’s, the size of the possible state set 
is 2n .  The linearity of the feedback function guarantees that the all zero 
state is always its own successor.  Therefore, the longest possible shift 
register cycle contains all of the nonzero states, and is periodic of period 
2n –1.  

 
A sequence generated by a linear feedback shift-register of span n having a 
period  
2n –1 is called a maximum length linear shift register sequence or more simply 
an  
m-sequence. 
 
Exercise 2: Construct the LFSR with the characteristic polynomial .13 +x  
Furthermore, if the initial state of this shift-register is 001, write the periodic 
sequence that it generates.  
 

Solution: : Using the above notation, let n = 3, c0 = 1, c2 = 0.   
Thus, sj+3 = sj  modulo 2. The wiring of this LFSR is as follows: 

 
       w0        w1                    w2                  
       sj         sj+1                 sj+2             
 

          sj+3 = sj  
       
 

The sequence is 100 of period 3. This LFSR does not generate an  
m-sequence of length 7.   
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Exercise 3:  Construct the LFSR with the characteristic polynomial .13 ++ xx  
Furthermore, if the initial state of the shift-register is 001, write the periodic 
sequence that is generated.  
 

Solution: Using the above notation, let n = 3, c0 = 1, c2 = 1.  Thus,  
sj+3 = sj  ⊕  sj+1 modulo 2. The wiring of this LFSR is as follows: 

 
 
       w0        w1                   w2                  
       sj        sj+1                   sj+2             
 

      sj+3 = sj ⊕  sj+1 

       
 

The sequence is 1011100 of period 7. This LFSR does generate an  
m-sequence of length 7.   

 
     Randomness Properties of m-sequences 

 
The usefulness of m-sequences depends in large part on their having nearly 
ideal randomness properties. The randomness properties that we would like a 
sequence to have are given below. 
 
The Balance Property:  In a sequence the number of ONEs is the same as the 
number of ZEROs. 
 
The Run Property: Among the runs of ONEs and ZEROs in a sequence, one-half 
the runs are of length one, one-fourth are of length two, one-eighth are of length 
three, and so on, as long as these fractions give meaningful number of runs. 
 
The Correlation Property: When a sequence is compared term–by–term with a 
cyclically shifted version of the same sequence, the number of agreements 
equals the number of disagreements.  
 
We will discover that m-sequences satisfy the above randomness properties as 
closely as possible for each period of the sequence.  
 
Exercise 3: Given that every non-zero n-tuple is seen as a state within a LFSR 
exactly once during the generation of an m-sequence, explain why the balance 
property holds for every m-sequence. In particular, there are 2n-1  ONEs  and   
2n-1 –1  ZEROs in an  m-sequence of length 2n –1.  
 

Solution: An n stage shift-register generating an m-sequence cycles 
through all 2n –1 states before it repeats.  In decimal notation, each state 
can be thought of representing an integer from 1 to 2n –1.  From 1 to  
2n –1 there are 2n-1  odd integers and 2n-1  even integers.  Thus, an  
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m-sequence contains 2n-1  ONEs and 2n-1 –1 ZEROs and will therefore 
always possess the balance property.  

 
Example 3:  Given below is an m-sequence of length 63 generated from a span 
n = 6 LFSR. Marked on the sequence are the runs of length greater than 2.  
 

     

54

2

32

4

3

3

22

232

2

26
000001000011000101001111100001110010001110111011001101010111111  

 
Exercise 4: In Example 3 there are a total of 32 runs, including the singleton 
runs. One half of the runs (16) are of length one, one fourth (8) are of length two, 
one eighth (4) are of length three, and one sixteenth (2) are of length four.  For 
each of these lengths there are equally many runs of ZEROs and ONEs.  Finally, 
there is one run of five consecutive ZEROs and one of six consecutive ONEs. 
Explain why the run property holds for all m-sequences.  

 
Solution: In an m-sequence of period 2n –1, every non-zero n-tuple 
occurs exactly once.  If the n-tuple 000… 0 occurs, the sequence will 
remain forever in the state 000… 0 .  Therefore, the n-tuple, 000… 0, 
nevers occurs in an m-sequence.  Since every non-zero n-tuple occurs, 
the n-tuple 111… 1 must occur exactly once with a zero preceding and 
following this all ONE n-tuple.  The (n+2)-tuple, 011… 10, contains the  
n-tuples [011… 1]10 and 01[1… 110].  These n-tuples are not repeated 
elsewhere in the sequence.  Hence, there can be no run of n-1 ONEs in 
the sequence.  However, there is exactly one run of length n-1 of 
ZEROs, represented in the consecutive n-tuple 10… 00 and 00… 01. 
Now consider the runs of ONEs and length r where 20 −≤< nr .  Each 
such run can be made to correspond to n-tuples of the type  

2
 . . . 01 . . . 110

−− rnr
xxx  

where the x’s are arbitrary bits.  The number of such n-tuples of run 
length r is 2n-r-2.  A similar argument gives the same number of runs of 
ZEROs of length  r.  This completely determines the run structure of  
m-sequences. 

 
Experiment: Compare an m-sequence {si} with a cyclic shift of itself.  This 
comparison is called autocorrelation.  Suppose an m-sequence is added to itself 
bit by bit using modulo 2 addition.  When the sequence is added in phase with 
itself, we get the null sequence.  When the sequence is added to each out of 
phase shift of the sequence a miracle occurs.  What is this miracle?  Explain.  
Do m-sequences have the correlation property?  Explain. 
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Solution: When the sequence is added to each out of phase shift of the 
sequence, the resulting sequence is a non-zero sequence that is a 
shifted version of the original sequence. This property is known as the 
Shift-and-Add property. For example, 1011100, denoted by {si}, is an  
m-sequence.  Let {si+1} denoted the sequence {si} shifted to the left by 
one bit. We find that  {si+1} = 0111001.  When {si+1} and {si} are added 
modular 2 (bit by bit) the resulting sequence is 1100101.  A (1) in the 
resulting sequence means that {si+1} and {si} disagreed in that position 
while a (0) means that {si+1} and {si} agreed in that position.  Since the 
resulting sequence is an m-sequence it follows that the number of 
agreements and disagreements between an  m-sequence and a shifted 
version of the same m-sequence are just about equal.  Hence,  
m-sequences possess the correlation property.  

 
Examples of the shift-and-add property are given below: 
 
s0      1011100 s0     1011100 s0     1011100 
s1  ⊕  0111001 s2  ⊕ 1110010 s4  ⊕ 1001011 
s3      1100101 s6     0101110 s5     0010111 
 
 
We say that the shift-and-add pairs for the sequence 1011100 are (1,3), (2,6), 
and (4,5), e.g., the sequence 1011100 added modulo 2 to a shifted (by 3) 
version of itself produces a shifted (by 1) version of itself.  
 
Because m-sequences satisfy the three randomness properties they are 
sometimes referred to as pseudo-random or pseudo-noise sequences.  
Moreover, m-sequences are the only deterministic sequences that have the 
randomness properties and distinct n-tuples in each period of length 2n –1. 
 
Exercise 5:  Let us say a segment from an unknown m-sequence (S) is added to 
a shifted (by 3) version of itself: 
 
 (S)      101011101100. . .0111110011       Unknown m-sequence 
  (S3) ⊕  011101100011. . .1110011010       shift of 3  
  (S5)     110110001111. . .1001101001       shift of 5   
  
We can see that (3,5) is a shift and add pair for the sequence (S). Furthermore, 
the sum S ⊕  S3 ⊕  S5 = 000. . . 0000, the all zero sequence.  
 
 (S)      101011101100. . .0111110011       Unknown m-sequence 
 (S3)     011101100011. . .1110011010       shift of 3   
 (S5) ⊕  110110001111. . .1001101001       shift of 5   
            000000000000000000000000        SUM 
 



 224

What if the unknown m-sequence (S) was copied by a person who on the 
average made 10% errors in the sequence at random as she records the 
sequence (S’) from a digital communication network.  The mod 2 sum of (S’) and 
the sequence of shifts of 3 and 5, i.e.,  S’ ⊕  S’3 ⊕  S’5 = Σ   would no longer be the 
zero sequence.  In fact, it would give us a sequence (Σ) with some percentage of 
ones.   How would you estimate the density of ones in (Σ) if (3,5) was truly a 
shift-and-add pair of (S)? 
 

Solution:  The sequence (S) is subjected to random errors at a rate of 
10%.  That is, the probability that each bit in the original sequence (S), 
and in the shifted sequences, is in error is (.10). If the shifts of 3 and 5 
constitute a valid shift and add pair then S ⊕  S3 ⊕  S5  is the zero 
sequence.  The rows of the matrix [A] below are composed of S, S3, and 
S5.    

 
 
 
 
 

The probability that column (i) in matrix A contains : 
 

1. One error is   (.1)(.9)(.9) C(3,1)  = .243 
2. Two errors is  (.1)(.1)(.9) C(3,2)  = .027 
3. Three errors is  (.1)(.1)(.1)   = .001 
4. Zero errors is  (.9)(.9)(.9)  = .729 
 

Note: C(n,r) = (n !) / r !(n-r)!  is the number of different ways of selecting (r) 
elements from a set with (n) elements.   Since the summation is mod 2, one or 
three errors in column (i) will generate a one in the sequence (Σ).  Therefore, the 
density of ones in (Σ) is approximately 24.4%.   
 
Exercise 6: Given that someone has injected 20% errors in an m-sequence (S), 
how would you verify that (a,b) is a shift-and-add pair for (S)?  
 

Solution:  Using the same analysis as above, if (a,b) is a shift-and-add 
pair for the sequence  S, we would find that S ⊕  S3 ⊕  S5  would have 
39.2% errors, since (.2)(.8)(.8)C(3,1) + (.2)(.2)(.2) = .392.  If (a,b) is not 
a shift-and-add pair  S ⊕  S3 ⊕  S5   would have nearly 50% errors. 

 
As we have seen, m-sequences have some very interesting properties.  For 
nearly four decades the idea of using shift registers to generate sequences of 
1’and 0’s has been explored, developed, and refined.  There are, however, many 
more properties to be discovered.  Bon appetite! 
 

     
















=

1.100110100 . 11.1101100011
 0.111001101 . 11.0111011000

1.011111001 . 00.1010111011
A  
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Exercises 
 
1. Suppose x5 + x3 + 1 is the characteristic polynomial of a linear feedback shift-

register.  Wire the shift-register and generate the m-sequence.  
 
2.  Find the set of shift-and-add pairs for the sequence.   
 
3. Consider the summation of the three sequences S, Sj, and Sk  (S ⊕  Sj ⊕  Sk )  

where j and k are shift-and-add pairs for the sequence S.   Determine the 
percentages of ones in the sequence S ⊕  Sj ⊕  Sk when there is a 20% error 
rate in S. 

 
4. Write a paragraph that explains how shift-and-add pairs may be used to 

determine the generator of a sequence? 
 
 

    Capstone Historical Vignette 
 
ULTRA was the name given for the Allies ability to listen in on the most private 
communications of the Nazi leaders during World War II.  The German Enigma 
device was an electrical machine used to encode messages.  Its keyboard was 
similar to a typewriter, but the letters struck rotary disks that selected substitute 
letters at random to create encoded messages.  England’s survival of German 
air attacks, Dunkirk, North African Campaign, El Alamein, and V-1 rockets 
program all have a rich history of ULTRA and code breaking.  The final and 
crucial contribution of ULTRA was in Operation Overlord, the Allied invasion of 
mainland Europe from the British Isles.  
      
In 1943 the code-breakers had learned that General K. von Rundstet feared the 
Allies would arrive on the continent by way of Calais. To foster that notion, the 
Allied powers mounted a massive diversionary exercise, putting an entire ghost 
army opposite the far northern beaches of France.  By the Spring of 1944, the 
ULTRA teams listened in to the high-level debate between Hitler and his hard-
pressed generals on the best way to meet the 
powerful Allied attack.  The rest is history, but the 
real story is mathematics. 
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