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Parachute Jumping, Falling, and Landing   
David C. Arney, Barbra S. Melendez, Debra Schnelle 1 
 
 
Introduction 
 
It is extremely important that leaders of airborne units understand the safety, 
medical, and operational issues involved in parachute jumping.  Mathematical 
modeling of the flight and the landing of either a person or a cargo package can 
help with this understanding.  In this section, we describe, analyze, and model 
several components of parachute jumping.  These are basic models using 
simplified data in order to begin the study of these issues and should not be used 
for actual airborne operations.  The Army has numerous technical manuals that 
govern the technical issues associated with airborne operations.   
 

The Situation  
 
An airborne jumper, whose mass is 103 kg, leaps with 
a velocity of 0.555 m/s straight out (direction of the x-
axis) from the side of an airplane which is moving at a 
velocity of 115 m/s (direction of the y-axis).  The 
airplane is flying at an altitude (height on the z-axis) of 
4000 meters.  When the jumper leaves the aircraft, he 
is high enough in altitude that the air resistance can be 
considered negligible, and he falls as a freely falling 
body for 11.5 seconds until he pulls the parachute 
cord.  After that point, the fall becomes a three 
dimensional projectile motion problem with non-
constant acceleration along each axis as air resistance 
must now be taken into account.  The reference axes 
are established as follows (x-axis in direction of jumper 
leaving plane, y-axis in direction of plane when the 
jumper exits, z-axis is vertical, and the origin is on the 
ground directly under the plane the moment the jumper 
exits). 
 

When the parachute cord is pulled, we assume that the parachute deploys 
immediately and exerts a combined drag and air resistance force of magnitude 
D = dv2, where d is the drag coefficient due to the parachute and air resistance, 
and v is the velocity of the jumper.  In this case, we use d = 20, but normally the 
value of d is difficult to determine, since it depends on so many variables.   Assume 
the drag force is exerted only along the vertical direction (z-axis), and that the 
effect of air resistance along the y-direction can be modeled as a force of 
magnitude F = -bv, where the minus sign indicates that the force opposes the 
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direction of motion and b is the drag coefficient due to air resistance.  In this case, 
we use b = 10. 
 
Simultaneous to the opening of the parachute, the jumper experiences a cross 
wind in the positive x-direction of 1.2 
m/s.  The force due to this cross wind 
can be modeled as G = b(w  - v), where 
b is the drag coefficient due to air 
resistance (b is set to 10 above), v is the 
speed of the jumper, and w is the cross 
wind speed. 
 
The collision between the jumper and 
the ground can also be modeled using 
mathematics and physics.  There are 
several medical and safety factors that need to be considered for such a collision.  
Rapid deceleration of the head can be very serious due to the sheer strain on the 
brain stem (shear means that the shape of an object has changed as the result of 
forces).  A measure of this shear strain to the head is the severity index I ,  which is 
determined by the equation   
 
    I = [2(v) / (g ∆ t)]2.5 ( ∆ t), 
 
where v is the velocity at impact, ∆ t is the duration of impact, and g is the 
acceleration due to gravity.  When the severity index for a collision is above 1000, 
the collision is fatal.  When the value of the severity index is approximately 400, 
unconsciousness and mild concussion are the result. 
 
The stress on the long bones of the legs during the collision is compressive.  When 
the compression force per unit area exceeds the ultimate tensile strength of the 
bone (given below for various bones, with their associated cross-sectional areas), 
the bone breaks in compression. 
 

Bone Ultimate Tensile Average  
 Strength Cross-Sectional 
 (N/m2) Area (m2) 

Femur 1.21 x 108 5.81 x 10-4 
Tibia 1.40 x 108 3.23 x 10-4 

Spinal Cord 
(back) 

2.20 x 108 4.42 x 10-4 

Spinal Cord 
(neck) 

1.80 x 108 4.42 x 10-4 

 
    Table 1 
 



  

 63

The compressive force  F  experienced as a result of the impact on the earth can 
be determined from a physics model using momentum.  Momentum  p  is defined 
as p = mv and the Force model is   F = ∆p/ ∆ t,  where  ∆p is the change in 
momentum and ∆ t is the time duration of the collision. 
 
If the jumper lands on the ground, we assume that he performs a perfect 
"parachute landing fall," as he was taught in his free fall class.  The time of his 
impact will depend upon how soft the ground is where he lands.  Snow or soft 
sand, for example, would significantly extend his duration of impact and thus 
reduce the force of impact. 
 
More Simplifying Assumptions 
 
For our discussion and the initial modeling of this situation, we use the following 
assumptions in addition to or amplifying those already discussed: 
• We are not considering the complexities of landing such as landing on uneven 

ground or in the trees or in an inappropriate manner. 
• We assume the parachute opens instantaneously and the drag force D = 

dv2 takes effect immediately with no period of transition. 
• The jumper does not bend or twist upon landing, and thus the breaking torques 

of various bones and ligaments are not being considered. 
• The jumper leaves the airplane by jumping straight out with no rotation. 
• The information given for the severity index and the bone compression values 

for the tibia and femur are correct (although in reality they are approximate).  
• Even though the forces needed to provide the deceleration of the body produce 

great tensile stresses on ligaments and tendons and the failure level for these 
are much lower than for bone, we ignore these effects and concentrate on the 
bones. 

• The impact force is transmitted to the bones without attenuation through the 
ligaments or muscles. 

 
Time and Path of the Fall 
 
The jumper waits 11.5 seconds before pulling his 
parachute open.  During this period of time, he is 
in free fall (no air resistance).  His initial velocity 
in the vertical direction (z-axis) is zero, and the 
acceleration is due only to the gravitational force 
of  -9.80 m/s2.  Thus, the jumper's vertical position 
at the time he deploys his parachute is given by   
z (t) = z0 + vz0t + 0.5 azt 2 . Substitution produces  
z(11.5) = 4000 + 0.5 (-9.80) (11.5)2 = 3351.975 m. 
 
His initial velocity in the x-direction is 0.555 m/s, 
and there is no acceleration in this direction (air 
resistance is negligible during the first 11.5 
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seconds).  So, his position in the x-direction is given by    x(t) = x0 + vx0t + 0.5 axt 
2 .   Substitution produces   x(11.5) = 0 + 0.555(11.5) + 0 = 6.3825 m. 
 
Similarly, the initial velocity in the y-direction is 115 m/s, and the acceleration in 
this direction is zero. Thus, the position equation in the y-direction is y = y0 + vy0t + 
0.5 ayt 2.   Substitution produces  y(11.5) = 0 + 115(11.5) + 0 = 1322.5 m. 
 
Therefore, the position coordinate at which the jumper opened his parachute is (x, 
y, z) = (6.3825, 1322.5, 3351.975) m. 
 
When the jumper pulls the parachute rip-cord, his velocity in the x- and y-directions 
will be the same as the initial values for those velocities when he leaped from the 
aircraft.  His vertical velocity can be determined by the model   vz = vz0 + azt.    
Substitution produces vz = 0 + (-9.8)(11.5) = -112.7 m/s. 
 
Therefore, the velocity of the jumper when he pulls the parachute rip-cord is given 
by (vx, vy, vz) = (0.555, 115, -112.7) m/s. 
 
There are several ways to model the first few seconds of the parachute 
deployment.  First, we have assumed that the chute deployment is instantaneous.  
In general, the jumper is falling very fast during the final phase of free fall and 
slows considerably to a constant (or terminal) velocity over some interval of time.  
For our situation, we will assume, based on an experiment, that this transition 
phase lasts 3 seconds and that during this transition, the jumper falls 53 meters 
downward.   
 
Now we determine the terminal (constant) velocity of the jumper when the 
parachute is deployed.  He reaches terminal velocity when the drag force of the 
parachute, D = dv2, is equal to his weight, mg, so that the resultant acceleration is 
zero.  In other words, when dv2 + mg = 0 the terminal (constant) velocity is 
reached.  Solving for v, we get   dmgv /−=  . Substitution produces,  

20/)8.9(105 −−=v  = 7.1042 m/s  in the downward direction.  
 
Since at terminal velocity the jumper is falling downward at a constant rate of 
7.1042 m/s, the time required to fall the remaining distance of 3298 meters is: 
(3298)/(7.1042) = 464.2 seconds.  The total time of the fall is calculated by 
summing the time spent in free fall motion and the time with the parachute open, 
both before and after terminal velocity was reached.  Then the total time equals 
11.5 + 3.0 + 464.2 = 478.7 seconds. 
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Determining the Landing Coordinates 
 
Applying Newton's Second Law to the jumper's motion after the parachute deploys 
in both the x and y directions, we obtain the following models for the equations of 
motion. 
 
 x-direction: Fx = max 
 
  where   F = b(w - v) 
 
  so,  b(w-v) = max  
    bw - bv = ma 
    ma + bv = bw 
    mx" + bx' = bw 
    103x" + 10x' = 12. 
 
 y-direction: Fy = may 
 
  where  F = -bv 
 
  so,  - bv = may 
    ma + bv = 0 
    my" + by' = 0 
    103 y" + 10y' = 0 . 
 
Where m is the mass of the jumper, b is the coefficient of air resistance, and w is 
the wind speed.  We solve these equations to obtain the position function.  The 
initial conditions are the position and the velocity values at the time the parachute 
was opened. 
 
 y-direction: Use the characteristic equation mr 2 + br = 0, with roots r = 0 
and r = -(b/m).   So, the form of the general solution is   y(t) = C1e0 + C2e-(bt/m),  
where constants C1 and C2 are found by using the initial conditions. 
 
These conditions are at time t = 0; the time at which the parachute is opened and 
air resistance is no longer negligible.  So at this time, y = 1322.5 m and vy = 115 
m/s (from above).  Substitution produces: 1322.5 = C1 + C2    and  115 = -(b/m) C2,  
where b = 10 kg/m and m = 103 kg.   Therefore, C2 = - 1184.5  and  C1 = 
2507.  The solution is written as  y(t) = 2507 - 1184.5 e-(10/103)t. 
 
 x-direction:   In the x-direction, the differential equation is non-
homogeneous, so the associated homogeneous equation  mx" + bx' = 0  should be 
solved first, and then the non-homogeneous equation  mx" + bx' = bw  is solved.  
The characteristic equation for the homogeneous differential equation is  mr 2 + br 
= 0  where the roots are:  r = 0 and  r = -(b/m).  So, the complementary solution is:  
xc =  C1 e0 + C2 e-(bt/m).  Now we solve for the particular solution, xp, of the non-
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homogeneous equation mx" + bx' = bw.  We conjecture xp = At (the conjecture of xp 
= A does not work).  Then, xp' = A, and xp" = 0.  Substituting this solution into the 
differential equation yields  m(0) + bA = bw.  Therefore,   A = w and  xp = wt. 
 
The general solution is  x = xc + xp   Therefore, for our non-homogeneous 
differential equation, the solution is  x= C1 + C2 e-(bt/m) + wt , and substitution of 
our parameter values produces  x(t) = C1 + C2 e-(10/103)t + 1.2 t. 
 
We use the initial condition to determine the constants C1 and C2.  Note that again 
these are the conditions at time t = 0, that is, the time at which the parachute 
opened and air resistance is no longer negligible.  So, x(0) = 6.3825 m and vx(0)= 
0.555 m/s (from above). This substitution produces  6.3825 = C1 + C2  and 0.555 = 
- (b/m) C2 + w.  So,   C2 = 6.6435   and   C1 = - 0.261.  We obtain the solution    
x(t) = - 0.261 + 6.6435 e-(10/103)t + 1.2 t. 

 
In order to find the position coordinates of 
the jumper's landing site, we use the 
position equations and the total time of the 
jump.  Given the position equations found 
above, simply substitute into these 
equations the value of the time when the 
jumper lands (the total time experienced by 
the man-parachute system), t = 467.2 
seconds.  We find the landing position is: 
x = 560.4 m,  y = 2507 m,  and  z = 0 m. 
 

The Landing 
 
We need to determine the jumper's final velocity (i.e., his velocity immediately 
before impact) and the force of the collision upon the jumper.  The velocity 
equations will be the derivatives, with respect to time, of the position equations.  
Therefore, we compute 
 
 y-direction: position equation ---> y(t) = 2507 - 1184.5 e-(10/103)t 
 
   velocity equation ---> vy(t) = (- 1184.5)(-10/103) e-(10/103)t 
  
               = 115  e-(10/103)t 
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x-direction: position equation ---> x(t) = - 0.261 + 6.6435 e-(10/103)t + 1.2 t 
 
  velocity equation --->         vx(t) = (6.6435)(-10/103)  e-(10/103)t + 1.2 
 
               =  -0.645  e-(10/103)t + 1.2 
 
At the time of impact, the jumper has reached terminal velocity in the z-direction.  
Therefore, we know  vz(t) = - 7.1042 m/s.  Since we determined the total time of the 
fall is 478.7 seconds, and he opened his parachute at 11.5 seconds, we are 
interested in his velocity at 467.2 seconds.  This is the time value we substitute into 
the velocity equations above to obtain the velocity upon impact in each direction: 
 
   vx(467.2) =  -0.645  e-(10/103)(467.2) + 1.2 = 1.20 m/s 
 
   vy(467.2) = 115  e-(10/103)(467.2)  = 0.0 m/s 
 
   vz(467.2) = - 7.1042 m/s 
  
In vector notation, we write, v = v xi  + vy j + vz k, so v = (1.20 i + 0 j - 7.1042 k ) 
m/s. 
 
The magnitude of the velocity vector gives the speed of the jumper at the time of 
impact.  In order to determine the speed we use the Pythagorean theorem: 
 
 speed = (vx2 + vy2 + vz2) = (1.2)2 + (0)2 + (- 7.1042)2 = 7.2048 m/s. 
 
When the jumper collides with the ground he experiences a change in momentum  
∆p, given by  pfinal - pinitial.   After the jumper collides with the ground, he has no 
momentum.  Therefore,  pfinal = 0.  Additionally, if we assume that the collision 
takes place along a single direction, we can use the speed on impact to determine  
pinitial.  Momentum is given by  p=mv, where m is the mass of the jumper and v is 
his velocity at impact.  We can determine the initial momentum as pinitial = mv = 
(103)(7.2048) = 742.0944 kg·m/s. 
 
Since the final momentum is 0, the change in momentum ∆p  is   0 - 742.0944 = 
 -742.0944 kg·m/s.  This can also be described as  742.0944 N·s, where N = 1 
kg·m/s2 indicates force in units of Newtons. 
 
We determine the force of impact using the equation F = ∆p / ∆ t .  If we assume 
the jumper landed in thick bushes with a time of impact of 200 milliseconds (0.200 
seconds),  we calculate   F = (742.0944) / (.200) = 3,710.472 N. 
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Injuries? 
 
From the results we have calculated, we can determine if the jumper sustained any 
injuries.  Table 1 gave us the ultimate tensile strength in N/m2 and the average 
cross-sectional area in m2 for four bones vulnerable to injury in this type of fall.  By 
multiplying the tensile strength and the cross section we obtain the maximum force 
each bone is able to sustain without breaking.  Table 2 provides this information. 
 

Bone Ultimate Tensile Average  Max 
 Strength Cross-Sectional Sustainable 
 (N/m2) Area (m2) Force (N) 

Femur 1.21 x 108 5.81 x 10-4 70301 
Tibia 1.40 x 108 3.23 x 10-4 45220 

Spinal Cord (back) 2.20 x 108 4.42 x 10-4 97240 
Spinal Cord (neck) 1.80 x 108 4.42 x 10-4 79560 

 
Table 2 
 
From Table 2 we see that a force of 3,710.47 N would not break any of the four 
bones analyzed.   
 
Finally, we check for the possibility of injury to the head by shear strain.  We  
use the severity index, I, to determine possible injury.  We calculate 
I = [2(v)/(g ∆ t)]2.5 ( ∆ t) = [2( 7.2048) / [(9.8)(.200)] ]2.5 (.200) = 29.310.  The 
severity index of 29.310 is not close to the concussion level of 400.  Therefore, we 
conclude that there should be no serious injuries to the head caused by this 
landing.    
 
Conclusion 
 
We have used mathematical modeling in a parachute jump and landing scenario to 
analyze some of the factors associated with such an activity.   Certainly, more 
detailed and sophisticated analyses could be performed to understand more of the 
components of parachute jumping.  There are many issues that this scenario has 
ignored or that were assumed to hold that could use further study.  For instance, 
the transition period from free fall to steady-state falling with a deployed chute 
contains numerous factors that are worthy of more study (see the exercises).  Also, 
parachute deployment of heavy equipment like vehicles, weapon systems, and 
supplies is also worthy of study to insure the cargo lands safely and in the proper 
location.  
 
Exercises 
 
1.   Are there additional assumptions being made that should be explicitly listed?  
What are they?  Write a short essay that describes the role assumptions play in 
the modeling process. 
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2. Use the severity Index formula to determine the shear strain on the head during 
the 3 second transition period from free fall to the chute-deployed steady-state 
constant velocity.   
 
3. What would happen if the jumper in the scenario landed on a very hard surface, 
like rocks, and the interval of impact was reduced to  ∆ t=0.01 seconds?  Do you 
predict any injuries for the jumper? 
 

 
 
4.  Solve for the landing time and location, if the same scenario and model are 
used with an exit altitude of 6,000 meters. 
 
5.   Analyze the injury situation, if the same scenario and model are used with an 
exit altitude of 6,000 meters. 
 
6.  In this scenario the transition phase from free-fall to steady-state descent with a 
fully deployed chute is 3 seconds with a altitude change of 53 meters.  The velocity 
changes from 112.7 m/s to 7.1 m/s over that interval.  Will a linear model fit this 
data?  Why or why not?  Find a second-order (quadratic polynomial) to fit this data. 
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