Prove that the Collatz

conjecture is correct

Sanzhong Zou Email:75473066@qq.com
(Rom 2106, No. 228 Tianhe Rd Guangzhou, P. R. China)

Abstract

Assuming that the Collatz conjecture is incorrect, the natural numbers can be divided into two groups, namely, set B and set H . Set B is a natural number that satisfies the Collatz conjecture, and set H does not satisfy the Collatz conjecture. After performing the Collatz operation on the numbers in the H group, it is proved that the Collatz conjecture is correct.

Key words: Collatz algorithm ; B set; H Set
MR (2010) Subject classification 11R04

1. Preparatory work

Collatz algorithm:

$$
f(n) \begin{cases}n / 2 & \text { if } n \equiv 0(\bmod 2) \\ 3 n+1 & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

operations. Collatz conjectures that all natural numbers will eventually enter the cycle of $4 \rightarrow 2 \rightarrow 1 \rightarrow 4$ through the algorithm of Collatz algorithm, Suppose the Collatz guess is incorrect. Then there is:

Definition 1 Let N be a natural number set. The N set is decomposed into B set and H set.
1, The natural number that satisfies the " Collatz conjecture" is called the"Collatz number set", which is called the set B.

$$
\mathrm{B}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots \ldots b_{i}\right\} b_{1}=1, b_{2}=2, b_{3}=3, b_{4}=4 \ldots \ldots b_{i} \rightarrow \infty
$$

2 , The natural number that can not satisfy the "Collatz conjecture" is called the "Set of non Collatz numbers". It is called the set H .

$$
\mathrm{H}=\left\{h_{1}, h_{2}, h_{3}, h_{4}, \ldots \ldots h_{i}\right\}
$$

Obviously $\mathrm{B} \cup \mathrm{H}=\mathrm{N}, \mathrm{B} \cap \mathrm{H}=\emptyset, h_{1}$ is an odd number. Since h_{1} is the smallest natural number in H sets, that is if $\mathrm{n}<h_{1}$ has $\mathrm{n} \in \mathrm{B}$.

2. Proof of proposition

Assuming that the Collatz conjecture is incorrect, that $\forall \mathrm{n}$ if $\mathrm{n} \in \mathrm{H}$, Then there are Collatz algorithm

$$
f(n) \begin{cases}n / 2 & \text { if } n \equiv 0(\bmod 2) \\ 3 n+1 & \text { if } n \equiv 1(\bmod 2)\end{cases}
$$

After Collatz algorithm, $f(\mathrm{n}) \ldots \ldots \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4$, will not happen, that $\mathrm{n} \in \mathrm{H}$. In $\mathrm{H}=\left\{h_{1}, h_{2}, h_{3}, h_{4}, \ldots \ldots h_{i}\right\}, h_{1}$ is the smallest number in H , Obviously it is odd number, there is: Lemma 1 Set $h_{1}=2 p+1$. have $p=2 n+1$, that is $h_{1}=4 n+3$, and $3 h_{1}+1$ cannot be divisible by 4 .
Proof When $p=2 n, h_{1}=4 n+1, \quad$ Collatz algorithm: $3 \times(4 n+1)+1=12 n+4$, $(12 n+4) / 2=6 n+2, \quad(6 n+2) / 2=3 n+1, \quad \because 3 n+1<4 n+1=h_{1}, \quad \therefore 3 n+1 \in B$, $\therefore p=2 n+1 \quad \because 3 h_{1}+1=3(4 n+3)+1=12 n+10$, and $(12 n+10) / 4=3 n+5 / 2$, not an integer, $\therefore 3 h_{1}+1$ cannot be divisible by 4 . \#
To facilitate the proof, we establish the plane rectangular coordinate system as follows

In the picture, $\mathrm{Y}=h_{i}$ and $X=3 Y+1$ intersect at D point. The DE vertical line can be established to get the triangle DOE, have $\tan Q=\frac{Y}{3 Y+1}$, set $\mathrm{DE}=\mathrm{Y}=h_{1}$ that is $0 \mathrm{E}=X_{1}=3 h_{1}+1,\left(X_{i}\right.$ and h_{i} are one-to-one correspondence $) \quad$ when $\mathrm{DE}=h_{1}$, have $\tan Q=\frac{h_{1}}{3 h_{1}+1}, \quad \because 3 h_{1}+1$ is even number, Collatz algorithm, there are, $h_{2}=\frac{X_{1}}{2^{n_{1}}}=\frac{3 h_{1}+1}{2^{n_{1}}}, \quad n_{1} \geq 1, h_{2} \in H, \quad\left(\right.$ When $\frac{3 h_{1}+1}{2^{n_{1}}}$ is an odd, n_{1} is the maximum value), set $\mathrm{y}=\frac{3 h_{1}+1}{2^{n_{1}}}=h_{2}, \quad \because \tan Q=\frac{h_{1}}{3 h_{1}+1}=\frac{h_{2}}{X_{2}}$ that is: $X_{2}=\frac{h_{2}\left(3 h_{1}+1\right)}{h_{1}}$
$\therefore X_{2}=\frac{\left(3 h_{1}+1\right)^{2}}{2^{n_{1}} h_{1}}$, Collatz algorithm, there are: $h_{3}=\frac{X_{2}}{2^{n_{2}}}=\frac{\left(3 h_{1}+1\right)^{2}}{h_{1} 2^{n_{1}} 2^{n_{2}}}$, here $\mathrm{Y}=h_{3}$, $\tan Q=\frac{h_{1}}{3 h_{1}+1}=\frac{h_{3}}{X_{3}} \quad$ that is: $\quad X_{3}=\frac{h_{3}\left(3 h_{1}+1\right)}{h_{1}}=\frac{\left(3 h_{1}+1\right)\left(3 h_{1}+1\right)^{2}}{h_{1}^{2} 2^{n_{1}} 2^{n_{2}}}$, Collatz algorithm, there are: $h_{4}=\frac{X_{3}}{2^{n_{3}}}=\frac{\left(3 h_{1}+1\right)^{3}}{h_{1}^{2} 2^{n_{1}} 2^{n_{2}} 2^{n_{3}}} \quad \ldots \quad . . \quad$ Reasoning in the same way, We can get: $h_{i+1}=\frac{\left(3 h_{1}+1\right)^{i}}{h_{1}^{i-1} 2^{n_{1}+n_{2} \ldots+n_{i}}} \quad, \quad\left(n_{1}+n_{2}+\cdots n_{i}\right) \geq i$,
When $n_{1}=n_{2}=\cdots n_{i}=1,\left(n_{1}+n_{2}+\cdots+n_{i}\right)=i$, set $\left(n_{1}+n_{2}+\cdots n_{i}\right)=\beta, \beta \geq i$
That is (1) have: $h_{i+1}=h_{1}\left(\frac{3 h_{1}+1}{h_{1} 2^{\beta / i}}\right)^{i} \because h_{i+1}$ is an integer, $\therefore \frac{3 h_{1}+1}{h_{1} 2^{\beta / i}}$ must is an integer, $\because \frac{3 h_{1}+1}{h_{1}}$ not an integer, $\therefore \frac{3 h_{1}+1}{2^{\beta / i}}$ must is an integer, Lemma 1: 4 do not divide $\left(3 h_{1}+1\right), \therefore \exists 2^{\beta / i}=2, \therefore \beta / i=1, \beta=i, \therefore\left(n_{1}+n_{2} \ldots+n_{i}\right)=i, \therefore n_{1}=n_{2}=\cdots n_{i}=1$, $\therefore h_{i}=4 n+3, \therefore p_{i}=2 n_{j}+1, \therefore h_{1}=2 p_{1}+1=2\left(2\left(2 \ldots\left(2 n_{j}+1\right) \ldots+1\right)+1\right)+1$, $j=1,2,3 \ldots j \rightarrow \infty$
proof: If j is not infinite, then loops must occur in H sets, and (1) the necessary conditions for loops to occur are: $h_{1}\left(\frac{3 h_{1}+1}{h_{1} 2^{\beta / i}}\right)^{i}=h_{1}$, that is $\left(\frac{3 h_{1}+1}{h_{1} 2^{\beta / i}}\right)^{i}=1, \quad \therefore 3 h_{1}+1=h_{1} 2^{\beta / i}$
Obviously, $3 h_{1}+1 \neq 2 h_{1}$, Therefore, equation (1) cannot generate cycles beginning with $h_{1} . \because n_{1}=n_{2}=\cdots n_{i}=1$, so $\forall h_{i}$ will be the same result, $\therefore \mathrm{j} \rightarrow \infty$, \#

Because $\mathrm{j} \rightarrow \infty, \therefore h_{1}=2 p_{1}+1=2\left(2\left(2 \ldots\left(2 n_{j}+1\right) \ldots+1\right)+1\right)+1 \rightarrow \infty$, So in H set, we can never find a h_{1} to satisfy Collatz operation, that is $\mathrm{H}=\emptyset$, Therefore, the Collatz conjecture is correct. Proof of completion!

REFERENCES

[1] Chaohao Gu, Mathematics Dictionary, Shanghai Dictionary Press, (1992)

