<>运算和函数符号采用matlab 标准</P><>利用几何或定积分,得到上部分截面的面积s=(acos(1-h)-(1-h).*(1-(1-h).^2).^0.5)</P><>圆面积=pi</P><P>1/3*圆面积=上部分截面的面积</P><P>求h高度转化为求方程y=1/3*pi-(acos(1-h)-(1-h).*(1-(1-h).^2).^0.5)的零点</P><P>1:构造函数m文件f1_.m</P><P>**************************************************************************</P><P>function y=f1_(h)
y=1/3*pi-(acos(1-h)-(1-h).*(1-(1-h).^2).^0.5);</P><P>***************************************************************************</P><P>2:利用作图,找到方程的大致零点,matlab程序是:</P><P>******************************************************************************************</P><P>h=0:0.01:1;
>> plot(h,f1_(h))
>> hold on
>> plot(h,zeros(length(h),1))</P><P>*******************************************************************************************</P><P>发现零点h在0.7~0.8之间</P><P>3:利用二分法求零点</P><P>相应的m文件是</P><P>********************************************************************************************</P><P>% bisec_n(f_name, a,c): bisection method without graphics
% f_name: definition of the equation to solve
% a, c : end points of initial interval
% Copyright S. Nakamura, 1995
function bisec_n(f_name, a,c)
f_name
% tolerance : tolerance
% it_limit : limit of iteration number
% Y_a, Y_c : y values of the current end points
fprintf( 'Bisection Scheme\n\n' );
tolerance = 0.000001; it_limit = 30;
fprintf( ' It. a b c f(a) ');
fprintf( ' f(b) f(c)\n' );
it = 0;
Y_a = feval(f_name, a ); Y_c = feval(f_name, c );
if ( Y_a*Y_c > 0 )
fprintf( '\n\n Stopped because f(a)f(c) > 0 \n' );
fprintf( '\n Change a or b and run again.\n' );
else
while 1
it = it + 1;
b = (a + c)/2; Y_b = feval(f_name, b );
fprintf('%3.0f %10.6f, %10.6f', it, a, b );
fprintf('%10.6f, %10.6f, %10.6f, %10.6f\n', c, Y_a, Y_b, Y_c );
if ( abs(c-a)<=tolerance )
fprintf( ' Tolerance is satisfied. \n' );break
end
if ( it>it_limit )
fprintf( 'Iteration limit exceeded.\n' ); break
end
if( Y_a*Y_b <= 0 ) c = b; Y_c = Y_b;
else a = b; Y_a = Y_b;
end
end
fprintf('Final result: Root = %12.6f \n', b );
end</P><P>**************************************************************************</P><P>调用格式</P><P>*************************************************************************</P><P>bisec_n('f1_',0.7,0.8)</P><P>**************************************************************************</P><P>4:结果</P><P>h=0.735068
</P> |