数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 11484|回复: 27

[分享][推荐]数学建模培训讲座

[复制链接]
发表于 2004-6-3 03:17:32 | 显示全部楼层 |阅读模式
<><B><FONT face="Times New Roman"><FONT size=3>时下,已经开始数学建模竞赛报名了,宝宝将自己当是学习的讲座贴出来,希望新手回去好好学习。</FONT></FONT></B>
<><b><FONT face="Times New Roman" size=3>对了,斑竹不好意思宝宝不能上传,只好这样贴出来。</FONT></b>
<><B><FONT face="Times New Roman"><FONT size=3>1.</FONT>       </FONT></B><B><FONT size=3>一维插值

</FONT></B>
<p>
<P><B><FONT size=3>对表格给出的函数,求出没有给出的函数值。
<p></FONT></B>
<p>
<P><FONT size=3>在实际工作中,经常会遇到插值问题。
<p></FONT>
<p>
<P><FONT size=3>例<FONT face="Times New Roman">1</FONT>:表<FONT face="Times New Roman">1</FONT>是待加工零件下轮廓线的一组数据,现需要得到<FONT face="Times New Roman">x</FONT>坐标每改变<FONT face="Times New Roman">0.1</FONT>时所对应的<FONT face="Times New Roman">y</FONT>的坐标<FONT face="Times New Roman">.<B>
<p></B></FONT></FONT>
<p>
<TABLE cellSpacing=0 cellPadding=0 border=1>

<TR>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">x
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">0
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">3
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">5
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">7
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">9
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">11
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">12
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">13
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">14
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">15
<p></FONT>
<p></TD></TR>
<TR>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">y
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">0
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">1.2
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">1.7
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">2.0
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">2.1
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">2.0
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">1.8
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">1.2
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">1.0
<p></FONT>
<p></TD>
<TD vAlign=top width=41>
<P><FONT face="Times New Roman">1.6
<p></FONT>
<p></TD></TR></TABLE>
<P><FONT size=3>下面是关于插值的两条命令<FONT face="Times New Roman">(</FONT>专门用来解决这类问题<FONT face="Times New Roman">)</FONT>:</FONT></P>
<P><FONT size=3><FONT face="Times New Roman">y=interp1(x0,y0,x)        </FONT>分段线性插值</FONT></P>
<P><FONT size=3><FONT face="Times New Roman">y=spline(x0,y0,x)         </FONT>三次样条插值</FONT></P>
<P><FONT size=3>其中<FONT face="Times New Roman">x0,y0</FONT>是已知的节点坐标,是同维向量。<FONT face="Times New Roman">y</FONT>对应于<FONT face="Times New Roman">x</FONT>处的插值。<FONT face="Times New Roman">y</FONT>与<FONT face="Times New Roman">x</FONT>是同维向量。</FONT></P>
<P><FONT size=3>解决上述问题<FONT face="Times New Roman">,</FONT>我们可分两步<FONT face="Times New Roman">:</FONT></FONT></P>
<P><FONT size=3>一<FONT face="Times New Roman"> </FONT>用原始数据绘图作为选用插值方法的参考<FONT face="Times New Roman">.</FONT></FONT></P>
<P><FONT size=3>二<FONT face="Times New Roman"> </FONT>确定插值方法进行插值计算</FONT></P>
<P><FONT size=3>对于上述问题<FONT face="Times New Roman">,</FONT>可键入以下的命令<FONT face="Times New Roman">:</FONT></FONT></P>
<P><FONT face="Times New Roman"><FONT size=3>x0=[0,3,5,7,9,11,12,13,14,15]';
<p></FONT></FONT>
<p>
<P><FONT face="Times New Roman"><FONT size=3>y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]'
<p></FONT></FONT>
<p>
<P><FONT size=3><FONT face="Times New Roman">plot(x0,y0)           %</FONT>完成第一步工作</FONT></P>
<P><FONT face="Times New Roman" size=3>x=0:0.1:15;</FONT></P>
<P><FONT size=3><FONT face="Times New Roman">y=interp1(x0,y0,x');    %</FONT>用分段线性插值完成第二步工作
<p></FONT>
<p>
<P><FONT face="Times New Roman" size=3>plot(x,y)</FONT></P>
<P><FONT face="Times New Roman"><FONT size=3>y=spline(x0,y0,x');     </FONT></FONT></P>
<P><FONT size=3><FONT face="Times New Roman">plot(x,y)             %</FONT>用三次样条插值完成第二步工作</FONT></P>
<P><FONT face="Times New Roman"><FONT size=3>
<p></FONT></FONT>
<p>
<P><FONT size=3>练习:对<FONT face="Times New Roman">y=1/(1+x<SUP>2</SUP>),-5</FONT>≤<FONT face="Times New Roman">x</FONT>≤<FONT face="Times New Roman">5</FONT>,用<FONT face="Times New Roman">n</FONT>(<FONT face="Times New Roman">=11</FONT>)个节点(等分)作上述两种插值,用<FONT face="Times New Roman">m</FONT>(<FONT face="Times New Roman">=21</FONT>)个插值点(等分)作图,比较结果。</FONT></P>
<P><FONT size=3>解:键入并运行如下命令</FONT></P>
<P><FONT face="Times New Roman" size=3>n=11;m=21;x=-5:10/(m-1):5;y=1./(1+x.^2);</FONT></P>
<P><FONT face="Times New Roman" size=3>xo=-5:10/(n-1):5;yo=1./(1+xo.^2);</FONT></P>
<P><FONT face="Times New Roman" size=3>y1=interp1(xo,yo,x);</FONT></P>
<P><FONT face="Times New Roman" size=3>y2=spline(xo,yo,x);</FONT></P>
<P><FONT face="Times New Roman" size=3>plot(x,y,'r',x,y1,'b',x,y2,'k')</FONT></P>
<P><B>练习:</B><FONT size=3>在某处测得海洋不同深度处水温如下:</FONT></P>
<TABLE cellSpacing=0 cellPadding=0 border=1>

<TR>
<TD vAlign=top width=95>
<P>深度</P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">446</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">714</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">950</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">1422</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">1634</FONT></P></TD></TR>
<TR>
<TD vAlign=top width=95>
<P>水温</P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">7.04</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">4.28</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">3.40</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">2.54</FONT></P></TD>
<TD vAlign=top width=95>
<P><FONT face="Times New Roman">2.13</FONT></P></TD></TR></TABLE>
<P><FONT size=3>求深度为<FONT face="Times New Roman">500</FONT>、<FONT face="Times New Roman">1000</FONT>、<FONT face="Times New Roman">1500</FONT>米处的水温。</FONT></P>
<P><FONT size=3>解:输入程序:</FONT></P>
<P><FONT face="Times New Roman" size=3>D=[446,714,950,1422,1634];</FONT></P>
<P><FONT face="Times New Roman" size=3>T=[7.04,4.28,3.40,2.54,2.13];</FONT></P>
<P><FONT face="Times New Roman" size=3>Di=[500,1000,1500];</FONT></P>
<P><FONT face="Times New Roman" size=3>Ti=interp1(D,T,Di)</FONT></P>
<P><FONT size=3><FONT face="Times New Roman">MATLAB</FONT>的命令<FONT face="Times New Roman">interp1(X,Y,Xi,’method’)</FONT>用于一元插值<FONT face="Times New Roman">.</FONT>其中<FONT face="Times New Roman">Method</FONT>可选<FONT face="Times New Roman">’nearest’(</FONT>最近邻插值<FONT face="Times New Roman">),’linear’(</FONT>线性插值<FONT face="Times New Roman">),’spline’(</FONT>三次样条插值<FONT face="Times New Roman">),’cubic’(</FONT>三次多项式插值<FONT face="Times New Roman">)</FONT></FONT></P>
 楼主| 发表于 2004-6-3 03:18:15 | 显示全部楼层
< 0cm 0cm 0pt 21.25pt; TEXT-INDENT: 1.45pt; mso-list: l44 level1 lfo47; tab-stops: list 40.7pt"><B normal"><FONT face="Times New Roman">1.       </FONT></B><B normal">二维插值<p></p></B></P>< 0cm 0cm 0pt 21.25pt"><FONT face="Times New Roman">MATLAB</FONT>中二维插值的命令是:</P>< 0cm 0cm 0pt 21.25pt"><FONT face="Times New Roman">z=interp2</FONT>(<FONT face="Times New Roman">x0,y0,z0,x,y,'meth'</FONT>)<FONT face="Times New Roman"> </FONT></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">例2:在一个长为5个单位,宽为3个单位的金属薄片上测得15个点的温度值,试求出此薄片的温度分布,并绘出等温线图。(数据如下表)<p></p></P><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 77.4pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-border-alt: solid windowtext .5pt; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt; mso-table-layout-alt: fixed" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-diagonal-down: .5pt solid windowtext" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">y<v:shapetype> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape>  x<v:shape> <v:imagedata></v:imagedata></v:shape><p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  1<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=61><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  2<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 44.4pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=59><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  3<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">   4<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  5<p></p></P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  1<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  82<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=61><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  81<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 44.4pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=59><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  80<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  82<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  84<p></p></P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  2<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  79<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=61><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  63<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 44.4pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=59><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  61<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  65<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  87<p></p></P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  3<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  84<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=61><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  84<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 44.4pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=59><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">   82<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  85<p></p></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">  86<p></p></P></TD></TR></TABLE><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">程序:temps=[82,81,80,82,84;79,63,61,65,87;84,84,82,85,86];<p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%">      mesh(temps)        %根据原始数据绘出温度分布图,可看到此图的粗造度。<p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%; TEXT-ALIGN: center" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%"> %下面开始进行二维函数的三阶插值。<p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%"> width=1:5; depth=1:3; di=1:0.2:3; wi=1:0.2:5;<p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%"> [WI,DI]=meshgrid(wi,di);%增加了节点数目<p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%"> ZI=interp2(width,depth,temps,WI,DI,'cubic');%  对数据(width,depth,temps)进<p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%"> %  行三阶插值拟合。<p></p></P><P 0cm 0cm 0pt; LINE-HEIGHT: 120%"> surfc(WI,DI,ZI)<p></p></P><P 0cm 0cm 0pt 21.25pt">contour(WI,DI,ZI)<p></p></P><P 0cm 0cm 0pt 21.25pt"><v:shape><v:imagedata></v:imagedata></v:shape><FONT face="Times New Roman">  </FONT><v:shape><v:imagedata></v:imagedata></v:shape></P>
 楼主| 发表于 2004-6-3 03:18:43 | 显示全部楼层
< 0cm 0cm 0pt"><B><FONT face="Times New Roman">3</FONT></B><B>.曲线拟合</B><B><p></p></B></P>< 0cm 0cm 0pt"><B>假设一函数<FONT face="Times New Roman">g(x)</FONT></B><B>是以表格形式给出的,现要求一函数<FONT face="Times New Roman">f(x)</FONT></B><B>,使<FONT face="Times New Roman">f(x)</FONT></B><B>在某一准则下与表格函数(数据)最为接近</B>。</P>< 0cm 0cm 0pt">由于与插值的提法不同,所以在数学上理论根据不同,解决问题的方法也不同。<p></p></P><P 0cm 0cm 0pt">此处,我们总假设<B><FONT face="Times New Roman">f(x)</FONT></B>是多项式。<p></p></P><P 0cm 0cm 0pt">例3:弹簧在力F的作用下伸长x厘米。F和x在一定的范围内服从虎克定律。试根据下列数据确定弹性系数k,并给出不服从虎克定律时的近似公式。<p></p></P><TABLE medium none; BORDER-TOP: medium none; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-border-alt: solid windowtext .5pt; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt" cellSpacing=0 cellPadding=0 border=1><TR 12.95pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">x</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">1</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">2</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">4</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">7</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">9</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">12</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">13</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">15</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 33pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 12.95pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">17</FONT></P></TD></TR><TR 14.7pt"><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">F</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">1.5</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">3.9</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">6.6</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">11.7</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">15.6</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">18.8</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">19.6</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 32.95pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">20.6</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 33pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; HEIGHT: 14.7pt; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=44><P 0cm 0cm 0pt"><FONT face="Times New Roman">21.1</FONT></P></TD></TR></TABLE><P 0cm 0cm 0pt">解题思路:可以用一阶多项式拟合求出k,以及近似公式。<p></p></P><P 0cm 0cm 0pt">在MATLAB中,用以下命令拟合多项式。</P><P 0cm 0cm 0pt; TEXT-INDENT: 52.5pt; mso-char-indent-count: 5.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">polyfit</FONT>(<FONT face="Times New Roman">x0,y0,n</FONT>)</P><P 0cm 0cm 0pt">一般,也需先观察原始数据的图像,然后再确定拟和成什么曲线。</P><P 0cm 0cm 0pt">对于上述问题<FONT face="Times New Roman">,</FONT>可键入以下的命令<FONT face="Times New Roman">:</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 10.5pt; mso-char-indent-count: 1.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">x=[1,2,4,7,9,12,13,15,17]';</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">  F=[1.5,3.9,6.6,11.7,15.6,18.8,19.6,20.6,21.1]';</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 10.5pt; mso-char-indent-count: 1.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman"> plot(x,F,'.')</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 10.5pt; mso-char-indent-count: 1.0; mso-char-indent-size: 10.5pt">从图像上我们发现:前<FONT face="Times New Roman">5</FONT>个数据应与直线拟合,后<FONT face="Times New Roman">5</FONT>个数据应与二次曲线拟合。于是</P><P 0cm 0cm 0pt; TEXT-INDENT: 10.5pt; mso-char-indent-count: 1.0; mso-char-indent-size: 10.5pt">键入<FONT face="Times New Roman">    a=polyfit(x(1:5),F(1:5),1);       a=polyfit(x(5:9),F(5:9),2)</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 10.5pt; mso-char-indent-count: 1.0; mso-char-indent-size: 10.5pt">得</P>注意:有时,面对一个实际问题,究竟是用插值还是用拟合不好确定,还需大家在实际中仔细区分。同时,大家(包括学过计算方法的同学)注意去掌握相应的理论知识。
 楼主| 发表于 2004-6-3 03:20:54 | 显示全部楼层
< 0cm 0pt?><B>4.数值积分

</B>
<p>
< TEXT-INDENT: 0cm 0pt; 15.75pt?>先看一个例子:</P>
< TEXT-INDENT: 0cm 0pt; 15.75pt?>例<FONT face="Times New Roman">4</FONT>.现要根据瑞士地图计算其国土面积。于是对地图作如下的测量:以西东方向为横轴,以南北方向为纵轴。(选适当的点为原点)将国土最西到最东边界在<FONT face="Times New Roman">x</FONT>轴上的区间划取足够多的分点<FONT face="Times New Roman">x<SUB>i</SUB></FONT>,在每个分点处可测出南北边界点的对应坐标<FONT face="Times New Roman">y<SUB>1</SUB> </FONT>,<FONT face="Times New Roman">y<SUB>2</SUB></FONT>。用这样的方法得到下表</P>
<P TEXT-INDENT: 0cm 0pt; 15.75pt?>x 7.0 10.5 13.0 17.5 34.0 40.5 44.5 48.0 56.0
y1 44 45 47 50 50 38 30 30 34
y2 44 59 70 72 93 100 110 110 110
x 61.0 68.5 76.5 80.5 91.0 96.0 101.0 104.0 106.5
y1 36 34 41 45 46 43 37 33 28
y2 117 118 116 118 118 121 124 121 121
x 111.5 118.0 123.5 136.5 142.0 146.0 150.0 157.0 158.0
y1 32 65 55 54 52 50 66 66 68
y2 121 122 116 83 81 82 86 85 68
</P>
[此贴子已经被作者于2004-6-2 20:23:50编辑过]

 楼主| 发表于 2004-6-3 03:20:57 | 显示全部楼层
< 0cm 0cm 0pt"><B>4.数值积分<p></p></B></P>< 0cm 0cm 0pt; TEXT-INDENT: 15.75pt">先看一个例子:</P>< 0cm 0cm 0pt; TEXT-INDENT: 15.75pt">例<FONT face="Times New Roman">4</FONT>.现要根据瑞士地图计算其国土面积。于是对地图作如下的测量:以西东方向为横轴,以南北方向为纵轴。(选适当的点为原点)将国土最西到最东边界在<FONT face="Times New Roman">x</FONT>轴上的区间划取足够多的分点<FONT face="Times New Roman">x<SUB>i</SUB></FONT>,在每个分点处可测出南北边界点的对应坐标<FONT face="Times New Roman">y<SUB>1</SUB> </FONT>,<FONT face="Times New Roman">y<SUB>2</SUB></FONT>。用这样的方法得到下表</P>
 楼主| 发表于 2004-6-3 03:23:43 | 显示全部楼层
< 0cm 0cm 0pt">根据地图比例知<FONT face="Times New Roman">18mm</FONT>相当于<FONT face="Times New Roman">40km</FONT>,试由上表计算瑞士国土的近似面积。(精确值为<FONT face="Times New Roman">41288km<SUP>2</SUP></FONT>)。</P>< 0cm 0cm 0pt">解题思路:数据实际上表示了两条曲线,实际上我们要求由两曲线所围成的图形的面积。</P>< 0cm 0cm 0pt">解此问题的方法是数值积分的方法。具体解时我们遇到两个问题:<FONT face="Times New Roman">1</FONT>。数据如何输入;<FONT face="Times New Roman">2</FONT>。没有现成的命令可用。</P><P 0cm 0cm 0pt">解:对于第一个问题,我们可把数据考备成<FONT face="Times New Roman">M</FONT>文件(或纯文本文件)。</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt">然后,利用数据绘制平面图形。键入</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">load mianji.txt</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">A=mianji';</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">plot(A(:,1),A(:,2),'r',A(:,1),A(:,3),'g')<p></p></FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt">接下来可以计算面积。键入:</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">a1=trapz(A(:,1)*40/18,A(:,2)*40/18);</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">a2=trapz(A(:,1)*40/18,A(:,3)*40/18);</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">d=a2-a1</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">d = 4.2414e+004</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt">至此,问题可以说得到了解决。之所以说还有问题,是我们觉得误差较大。但计算方法的理论给了我们更精确计算方法。只是<FONT face="Times New Roman">MATLAB</FONT>没有相应的命令。想得到更理想的结果,我们可以自己设计解决问题的方法。(可以编写辛普森数值计算公式的程序,或用拟合的方法求出被积函数,再利用<FONT face="Times New Roman">MATLAB</FONT>的命令<FONT face="Times New Roman">quad,quad8</FONT>)</P>
 楼主| 发表于 2004-6-3 03:24:12 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><B>5.数值微分</B></P>< 0cm 0cm 0pt 21pt"><B>实际的例</B><B>:</B>已知<FONT face="Times New Roman">20</FONT>世纪美国人口统计数据如下,根据数据计算人口增长率。(其实还可以对于后十年人口进行预测)</P><TABLE medium none; BORDER-TOP: medium none; MARGIN-LEFT: 8.2pt; BORDER-LEFT: medium none; BORDER-BOTTOM: medium none; BORDER-COLLAPSE: collapse; mso-border-alt: solid windowtext .5pt; mso-padding-alt: 0cm 5.4pt 0cm 5.4pt" cellSpacing=0 cellPadding=0 border=1><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 45.1pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent" vAlign=top width=60>< 0cm 0cm 0pt">年份</P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 36.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=49><P 0cm 0cm 0pt"><FONT face="Times New Roman">1900</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 36.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=49><P 0cm 0cm 0pt"><FONT face="Times New Roman">1910</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1920</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1930</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1940</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1950</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1960</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1970</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1980</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: windowtext 0.5pt solid; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">1990</FONT></P></TD></TR><TR><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: windowtext 0.5pt solid; WIDTH: 45.1pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=60><P 0cm 0cm 0pt">人口×<FONT face="Times New Roman">10<SUP>6</SUP><p></p></FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 36.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=49><P 0cm 0cm 0pt"><FONT face="Times New Roman">76.0<p></p></FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 36.6pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=49><P 0cm 0cm 0pt"><FONT face="Times New Roman">92.0</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">106.5</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">123.2</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">131.7</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">150.7</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">179.3</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">204.0</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">226.5</FONT></P></TD><TD windowtext 0.5pt solid; PADDING-RIGHT: 5.4pt; BORDER-TOP: #ece9d8; PADDING-LEFT: 5.4pt; PADDING-BOTTOM: 0cm; BORDER-LEFT: #ece9d8; WIDTH: 37.45pt; PADDING-TOP: 0cm; BORDER-BOTTOM: windowtext 0.5pt solid; BACKGROUND-COLOR: transparent; mso-border-left-alt: solid windowtext .5pt; mso-border-top-alt: solid windowtext .5pt" vAlign=top width=50><P 0cm 0cm 0pt"><FONT face="Times New Roman">251.4</FONT></P></TD></TR></TABLE><P 0cm 0cm 0pt 21pt">解题思路:设人口是时间的函数<FONT face="Times New Roman">x(t).</FONT>于是人口的增长率就是<FONT face="Times New Roman">x(t)</FONT>对<FONT face="Times New Roman">t</FONT>的导数<FONT face="Times New Roman">.</FONT>如果计算出人口的相关变化率<v:shapetype><FONT face="Times New Roman"> <v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></FONT></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape>。那么人口增长满足<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>,它在初始条件<FONT face="Times New Roman">x(0)=x0</FONT>下的解为<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape><FONT face="Times New Roman">.</FONT>(用以检查计算结果的正确性)</P><P 0cm 0cm 0pt 21pt">解:此问题的特点是以离散变量给出函数<FONT face="Times New Roman">x(t),</FONT>所以就要用差分来表示函数<FONT face="Times New Roman">x(t)</FONT>的导数<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt 21pt"><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></P><P 0cm 0cm 0pt 21pt">常用后一个公式。(因为,它实际上是用二次插值函数来代替曲线<FONT face="Times New Roman">x(t)</FONT>)即常用三点公式来代替函数在各分点的导数值:</P><P 0cm 0cm 0pt 21pt; TEXT-ALIGN: center" align=center><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">MATLAB</FONT>用命令<FONT face="Times New Roman">diff</FONT>按两点公式计算差分<FONT face="Times New Roman">;</FONT>此题自编程序用三点公式计算相关变化率<FONT face="Times New Roman">.</FONT>编程如下<FONT face="Times New Roman">:</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">for i=1:length(x)</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">    if i==1</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">        r(1)=(-3*x(1)+4*x(1+1)-x(1+2))/(20*x(1));</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">    elseif i~=length(x)</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">        r(i)=(x(i+1)-x(i-1))/(20*x(i));</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">    else</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">        r(length(x))=(x(length(x)-2)-4*x(length(x)-1)+3*x(length(x)))/(20*x(length(x)));</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">    end</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">end</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">r=r;</FONT></P><P 0cm 0cm 0pt 21pt">保存为<FONT face="Times New Roman">diff3.m</FONT>文件听候调用<FONT face="Times New Roman">.</FONT>再在命令窗内键入</P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">X=[1900,1910,1920,1930,1940,1950,1960,1970,1980,1990];</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">x=[76.0, 92.0, 106.5, 123.2, 131.7, 150.7, 179.3, 204.0, 226.5, 251.4];</FONT></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">diff3;</FONT></P><P 0cm 0cm 0pt 21pt">由于<FONT face="Times New Roman">r</FONT>以离散数据给出<FONT face="Times New Roman">,</FONT>所以要用数值积分计算<FONT face="Times New Roman">.</FONT>键入</P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">x(1,1)*exp(trapz(X(1,1:9),r(1:9)))</FONT></P><P 0cm 0cm 0pt 21pt">数值积分命令:<FONT face="Times New Roman">trapz(x),trapz(x,y),quad(‘fun’,a,b)</FONT>等<FONT face="Times New Roman">.</FONT></P>
 楼主| 发表于 2004-6-3 03:27:28 | 显示全部楼层
< 0cm 0cm 0pt; tab-stops: 0cm"><B><FONT face="Times New Roman">6</FONT></B><B>:微分方程数值解</B>(单摆问题)</P>< 0cm 0cm 0pt; TEXT-INDENT: 21pt; tab-stops: 0cm; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">单摆问题的数学模型是</P>< 0cm 0cm 0pt; TEXT-INDENT: 21pt; TEXT-ALIGN: center; tab-stops: 0cm; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt" align=center><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; tab-stops: 0cm; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt">在初始角度不大时<FONT face="Times New Roman">,</FONT>问题可以得到很好地解决<FONT face="Times New Roman">,</FONT>但如果初始角较大<FONT face="Times New Roman">,</FONT>此方程无法求出解析解<FONT face="Times New Roman">.</FONT>现问题是当初始角为<FONT face="Times New Roman">10<SUP>0</SUP></FONT>和<FONT face="Times New Roman">30<SUP>0</SUP></FONT>时<FONT face="Times New Roman">,</FONT>求出其解<FONT face="Times New Roman">,</FONT>画出解的图形进行比较。<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm">解<FONT face="Times New Roman">:</FONT>若θ<SUB><FONT face="Times New Roman">0</FONT></SUB>较小<FONT face="Times New Roman">,</FONT>则原方程可用<v:shape><FONT face="Times New Roman"> <v:imagedata></v:imagedata></FONT></v:shape>来近似<FONT face="Times New Roman">.</FONT>其解析解为θ(t)= θ<SUB><FONT face="Times New Roman">0</FONT></SUB>cosωt,<v:shape> <v:imagedata></v:imagedata></v:shape>.<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm">   若不用线性方程来近似,那么有两个模型:<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: center; tab-stops: 0cm" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">  </FONT>取<FONT face="Times New Roman">g=9.8,l=25, 10<SUP>0</SUP>=0.1745, 30<SUP>0</SUP>=0.5236.</FONT>用<FONT face="Times New Roman">MATLAB</FONT>求这两个模型的数值解,先要作如下的处理:令x1=θ,x2=θ’,则模型变为<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: center; tab-stops: 0cm" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm">再编函数文件<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">function xdot=danbai(t,x)<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">xdot=zeros(2,1);<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">xdot(1)=x(2);xdot(2)=-9.8/25*sin(x(1));<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm">在命令窗口键入<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">[t,x]=ode45(‘danbai’,[0:0.1:20],[0.1745,0]);<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">[t,y]=ode45(‘danbai’,[0:0.1:20],[0.5236,0]);<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">plot(t,x(:,1),’r’,t,y(:,1),’k’);<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><B>参考书</B><B><FONT face="Times New Roman">:</FONT></B><B>数学实验</B><B><FONT face="Times New Roman">,</FONT></B><B>高等教育出版社</B><B><p></p></B></P>
 楼主| 发表于 2004-6-3 03:27:51 | 显示全部楼层
< 0cm 0cm 0pt"><B><FONT face="Times New Roman">7</FONT></B><B>.解优化问题</B><B><p></p></B></P>< 0cm 0cm 0pt"><B>线性规划有约束极小问题</B><B><p></p></B></P>< 0cm 0cm 0pt"><B>模型</B><B><p></p></B></P><P 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata></v:shape></P><P 0cm 0cm 0pt">用命令</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">[x, fval]= linprog(f,A,b,A1,b1,lb,ub)</FONT></P><P 0cm 0cm 0pt">例<FONT face="Times New Roman">1</FONT>:<FONT face="Times New Roman">Find <B normal">x</B> that minimizes </FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">f(<B normal">x</B>)=-5x<SUB>1</SUB>-4x<SUB>2</SUB>-6x<SUB>3</SUB></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">subject to</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">x<SUB>1</SUB>-x<SUB>2</SUB>+x<SUB>3</SUB></FONT>≦<FONT face="Times New Roman">20</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">3x<SUB>1</SUB>+2x<SUB>2</SUB>+4x<SUB>3</SUB></FONT>≦4<FONT face="Times New Roman">2</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">3x<SUB>1</SUB>+2x<SUB>2</SUB></FONT>≦<FONT face="Times New Roman">30</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">0</FONT>≦<FONT face="Times New Roman">x<SUB>1</SUB>, 0</FONT>≦<FONT face="Times New Roman">x<SUB>2</SUB>,0</FONT>≦<FONT face="Times New Roman">x<SUB>3</SUB></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">First, enter the coefficients:</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">f = [-5; -4; -6]</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">A =  [1 -1  1</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">      3  2  4</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">      3  2  0];</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">b = [20; 42; 30];</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">lb = zeros(3,1);</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Next, call a linear programming routine:</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb)</FONT>;</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Entering x, fval,lambda.ineqlin, and lambda.lower gets</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">x =</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">    0.0000</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">   15.0000</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">    3.0000</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">fval =</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">  -78.0000</FONT></P><P 0cm 0cm 0pt">和其它信息。</P><P 0cm 0cm 0pt; tab-stops: 0cm">例<FONT face="Times New Roman">2</FONT>:解问题<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt">把问题极小化并将约束标准化<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm">键入<FONT face="Times New Roman">c=[-2,-3,-5];a=[-2,-5,-1];b=-10;a1=[1,1,1];b1=7;LB=[0,0,0];<p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">[x</FONT>,<FONT face="Times New Roman">y]=linprog</FONT>(<FONT face="Times New Roman">c,a,b,a1,b1,LB</FONT>)得当<FONT face="Times New Roman">X=(6.4286,0.5714,0.0000)</FONT>时<FONT face="Times New Roman">,z=14.5714</FONT>最大<FONT face="Times New Roman">.<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm">例<FONT face="Times New Roman">3: </FONT>解问题<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: center; tab-stops: 0cm" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm">解<FONT face="Times New Roman">:</FONT>键入<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">c=[-2,-1,1];a=[1,4,-1;2,-2,1];b=[4;12];a1=[1,1,2];b1=6;lb=[0;0;-inf];ub=[inf;inf;5];<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">[x,z]=linprog(c,a,b,a1,b1,lb,ub) </FONT>得当<FONT face="Times New Roman">X=(4.6667,0.0000,0.6667)</FONT>时<FONT face="Times New Roman">,z=-8.6667</FONT>最小<FONT face="Times New Roman">.<p></p></FONT></P>
 楼主| 发表于 2004-6-3 03:28:08 | 显示全部楼层
< 0cm 0cm 0pt"><B>非线性规划有约束极小问题</B><B><p></p></B></P>< 0cm 0cm 0pt"><B>模型</B><FONT face="Times New Roman">1<p></p></FONT></P>< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path gradientshapeok="t" connecttype="rect" extrusionok="f"></v:path><lock v:ext="edit" aspectratio="t"></lock></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape></P><P 0cm 0cm 0pt">用命令<FONT face="Times New Roman">x=constr('f ',x0)</FONT>。</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Examples</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Find values of x that minimize  f(x)=-x1x2x3, starting at the point x = [10; 10; 10] and subject to the constraints  0</FONT>≤<FONT face="Times New Roman">x1+2x2+2x3</FONT>≤72.<p></p></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">-x1-2x2-2x3</FONT>≤0,<FONT face="Times New Roman">x1+2x2+2x3</FONT>≤72,<p></p></P><P 0cm 0cm 0pt">第一步:编写<FONT face="Times New Roman">M</FONT>文件</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">function [f,g]=myfun(x)</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">f=-x(1)*x(2)*x(3);</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">g(1)=-x(1)-2*x(2)-2*x(3);</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">g(2)=x(1)+2*x(2)+2*x(3)-72;</FONT></P><P 0cm 0cm 0pt">第二步:求解</P><P 0cm 0cm 0pt">在<FONT face="Times New Roman">MATLAB</FONT>工作窗中键入</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">x0=[10,10,10];</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">x=constr('myfun',x0)</FONT>即可</P><P 0cm 0cm 0pt; tab-stops: 0cm"><B>模型</B><B><FONT face="Times New Roman">2</FONT></B>:<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: center; tab-stops: 0cm" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">MATLAB</FONT>求解此问题的命令是:<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">[x,fval,exitflag,output,lambda,grad,hessian]=fmincon(‘fun’,x0,A,b,A1,b1,LB,UB,’nonlcon’,<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">options,p1,p2,</FONT>…<FONT face="Times New Roman">)<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">fun</FONT>是目标函数的<FONT face="Times New Roman">m_</FONT>文件名<FONT face="Times New Roman">.nonlcon</FONT>是约束函数<FONT face="Times New Roman">C(x)</FONT>和<FONT face="Times New Roman">C1(x)</FONT>的<FONT face="Times New Roman">m_</FONT>文件名<FONT face="Times New Roman">.</FONT>文件输出为<FONT face="Times New Roman">[C,C1].<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm">例<FONT face="Times New Roman">:</FONT>求解最优化问题<p></p></P><P 0cm 0cm 0pt; TEXT-ALIGN: center; tab-stops: 0cm" align=center><v:shape><v:imagedata></v:imagedata></v:shape><p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm">第<FONT face="Times New Roman">1</FONT>步<FONT face="Times New Roman">: </FONT>建立目标函数和非线性约束的<FONT face="Times New Roman">m_</FONT>文件<FONT face="Times New Roman">.<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">Function y=e1511(x)% </FONT>目标函数的<FONT face="Times New Roman">m_</FONT>文件<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">Y=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">Function [c1,c2]=e1511b(x)% </FONT>非线性约束的<FONT face="Times New Roman">m_</FONT>文件<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">C1=[1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10];<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">C2=0;<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm">第<FONT face="Times New Roman">2</FONT>步<FONT face="Times New Roman">: </FONT>运行程序<FONT face="Times New Roman">.</FONT>键入<p></p></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">x0=[-1,1];a1=[1,1];b1=0;<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm"><FONT face="Times New Roman">[x,f,exitflab,output]=fmincon(‘e1511’,x0,[],[],a1,b1,[],[],’e1511b’)<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm">得结果<FONT face="Times New Roman">.<p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm">输出结果的意义<FONT face="Times New Roman">:</FONT>经过<FONT face="Times New Roman">4</FONT>次迭代<FONT face="Times New Roman">(iterations:4)</FONT>收敛到了<FONT face="Times New Roman">(exitfag=1)</FONT>最优解<FONT face="Times New Roman">x(1)=-1.2247,x(2)=1.2247,</FONT>目标函数最优值为<FONT face="Times New Roman">1.8951.<p></p></FONT></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-27 14:31 , Processed in 0.065612 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表