< ><B ><FONT face="Times New Roman">1</FONT></B><B >.曲线拟合</B><B ><FONT face="Times New Roman"> </FONT></B><B >美国人口预测</B><B ><p></p></B></P>
< >1.下表是美国人口统计数据,根据这份资料预测2000年美国人口总数。<p></p></P>
<TABLE cellSpacing=0 cellPadding=0 border=1>
<TR>
<TD vAlign=top width=91>
< ><FONT size=2>年<p></p></FONT></P></TD>
<TD vAlign=top width=350>
<P ><FONT size=2>1790 1800 1810 1820 1830 1840 1850<p></p></FONT></P></TD></TR>
<TR>
<TD vAlign=top width=91>
<P ><FONT size=2>人口(百万)<p></p></FONT></P></TD>
<TD vAlign=top width=350>
<P ><FONT size=2>3.9 5.3 7.2 9.6 12.9 17.1 23.2<p></p></FONT></P></TD></TR>
<TR>
<TD vAlign=top width=91>
<P ><FONT size=2>年<p></p></FONT></P></TD>
<TD vAlign=top width=350>
<P ><FONT size=2>1860 1870 1880 1890 1900 1910 1920<p></p></FONT></P></TD></TR>
<TR>
<TD vAlign=top width=91>
<P ><FONT size=2>人口(百万)<p></p></FONT></P></TD>
<TD vAlign=top width=350>
<P ><FONT size=2>31.4 38.6 50.2 62.9 76.0 92.0 106.5<p></p></FONT></P></TD></TR>
<TR>
<TD vAlign=top width=91>
<P ><FONT size=2>年<p></p></FONT></P></TD>
<TD vAlign=top width=350>
<P ><FONT size=2>1930 1940 1950 1960 1970 1980 1990<p></p></FONT></P></TD></TR>
<TR>
<TD vAlign=top width=91>
<P ><FONT size=2>人口(百万)<p></p></FONT></P></TD>
<TD vAlign=top width=350>
<P ><FONT size=2>123.2 131.7 150.7 179.3 204.0 226.5 251.4<p></p></FONT></P></TD></TR></TABLE>
<P ><FONT face="Times New Roman" size=3>Step 1 A=[1790,1800,1810,…;</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> 3.9, 5.3, 7.2,…]’;</FONT></FONT></P>
<P ><FONT face="Times New Roman"> Step 2 P=polyfit(A(:,1),A(:,2),3)</FONT></P>
<P ><FONT face="Times New Roman" size=3>Step 3 px=poly2str(P,'x')</FONT></P>
<P ><FONT face="Times New Roman" size=3>Step 4 polyval(P,2000)</FONT></P>
<P >如果想了解<FONT face="Times New Roman"> fx</FONT>与数据对<FONT face="Times New Roman">x-y</FONT>的拟和程度,绘出二者的图形最为直观,为此可键入:<p></p></P>
<P ><FONT size=3><FONT face="Times New Roman">ft=polyval(P,A(:,1));plot(A(:,1),A(:,2),'bo',A(:,1),ft,'r-')</FONT>得图形。图中蓝色小圆圈是数据对的图形;而红线是拟合多项式的图形。最后,可与<FONT face="Times New Roman">demo_sensus</FONT>比较。</FONT></P>
<P ><B ><FONT face="Times New Roman">2. </FONT></B><B >插值</B><B ><p></p></B></P>
<P ><FONT size=3>“线性插值”<FONT face="Times New Roman"> linear</FONT></FONT></P>
<P ><FONT size=3>“三次样条插值”<FONT face="Times New Roman"> spline</FONT></FONT></P>
<P ><FONT size=3>“三次多项式插值”<FONT face="Times New Roman"> cubic</FONT></FONT></P>
<P ><FONT size=3>对于以上问题,也可以用这三个命令来做。</FONT></P>
<P ><B ><FONT face="Times New Roman">3. </FONT></B><B >交通流量问题</B></P>
<P ><FONT size=3>下图给出了某城市部分单行街道的交通流量(每小时过车数)</FONT></P>
<P ><v:line><v:stroke endarrow="block"><FONT size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT size=3></FONT></v:stroke></v:line><FONT face="Times New Roman"><FONT size=3> x3 100 x6 </FONT></FONT></P>
<P ><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><FONT face="Times New Roman"><FONT size=3>300 x4 400 200 </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x2 x7 </FONT></FONT></P>
<P ><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><FONT face="Times New Roman"><FONT size=3>300 x1 600 x8 </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 500 200 400 </FONT></FONT></P>
<P ><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><v:line><v:stroke endarrow="block"><FONT face="Times New Roman" size=3></FONT></v:stroke></v:line><FONT face="Times New Roman"><FONT size=3>300 500 </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x9 x10 </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 600 700 </FONT></FONT></P>
<P ><FONT size=3>所给问题满足下列方程组</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x1-x3+x4=300</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x4+x5=500</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x7-x6=200</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x1+x2=800</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x1+x5=800</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x7+x8=1000</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> x8+x3+x6=1000 (x9=400, x10=600)</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Step1 A=[0,1,-1,1,0,0,0,0;</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 0,0,0,1,1,0,0,0;</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 0,0,0,0,0,-1,1,0;</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 1,1,0,0,0,0,0,0;</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 1,0,0,0,1,0,0,0;</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 0,0,0,0,0,0,1,1;</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 0,0,1,0,0,1,0,1];</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Step 2 b=[300,500,200,800,800,1000,1000]’;</FONT></P>
<P ><FONT face="Times New Roman" size=3>Step 3 B1=rank(A);B2=rank([A,b]);</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Step 4 </FONT>X=linsolve(A,b)<p></p></FONT></P>
<P ><FONT size=3>得特解。<p></p></FONT></P>
<P ><B ><FONT face="Times New Roman">4</FONT></B><B >.线性规划有约束极小问题</B><B ><p></p></B></P>
<P ><wrapblock><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata></v:imagedata><w:wrap type="topAndBottom"></w:wrap></v:shape></wrapblock><BR clear=all><FONT size=3>用命令<FONT face="Times New Roman">x=lp(C,A,b,vlb,vub)</FONT>。</FONT></P>
<P ><FONT size=3>例:<FONT face="Times New Roman">Find <B >x</B> that minimizes </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>f(<B >x</B>)=-5x<SUB>1</SUB>-4x<SUB>2</SUB>-6x<SUB>3</SUB></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>subject to</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">x<SUB>1</SUB>-x<SUB>2</SUB>+x<SUB>3</SUB></FONT>≦<FONT face="Times New Roman">20</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">3x<SUB>1</SUB>+2x<SUB>2</SUB>+4x<SUB>3</SUB></FONT>≦4<FONT face="Times New Roman">2</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">3x<SUB>1</SUB>+2x<SUB>2</SUB></FONT>≦<FONT face="Times New Roman">30</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">0</FONT>≦<FONT face="Times New Roman">x<SUB>1</SUB>, 0</FONT>≦<FONT face="Times New Roman">x<SUB>2</SUB>,0</FONT>≦<FONT face="Times New Roman">x<SUB>3</SUB></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>First, enter the coefficients:</FONT></P>
<P ><FONT face="Times New Roman" size=3>f = [-5; -4; -6]</FONT></P>
<P ><FONT face="Times New Roman" size=3>A = [1 -1 1</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 3 2 4</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 3 2 0];</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>b = [20; 42; 30];</FONT></P>
<P ><FONT face="Times New Roman" size=3>lb = zeros(3,1);</FONT></P>
<P ><FONT face="Times New Roman" size=3>Next, call a linear programming routine:</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>x= lp(f,A,b,lb);</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Entering x</FONT></P>
<P ><FONT face="Times New Roman" size=3>x = </FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 0.0000</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 15.0000</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 3.0000</FONT></FONT></P>
<P ><FONT size=3>实际此命令改为:<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>x = linprog(f,A,b,Aeq,beq)</FONT></P>
<P ><FONT face="Times New Roman" size=3>x = linprog(f,A,b,Aeq,beq,lb,ub)</FONT></P>
<P ><FONT size=3>对以上的问题可做如下的操作:</FONT></P>
<P ><FONT face="Times New Roman" size=3>First, enter the coefficients:</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>f = [-5; -4; -6]</FONT></P>
<P ><FONT face="Times New Roman" size=3>A = [1 -1 1</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 3 2 4</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 3 2 0];</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>b = [20; 42; 30];</FONT></P>
<P ><FONT face="Times New Roman" size=3>lb = zeros(3,1);</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Next, call a linear programming routine:</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb)</FONT>;</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Entering x, fval,lambda.ineqlin, and lambda.lower gets</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>x =</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 0.0000</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 15.0000</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> 3.0000</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>fval =</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> -78.0000</FONT></FONT></P>
<P ><FONT size=3>和其它信息。</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
<P ><B ><FONT face="Times New Roman">5</FONT></B><B >.非线性规划有约束极小问题</B><B ><p></p></B></P>
<P ><wrapblock><v:shape><v:imagedata></v:imagedata><w:wrap type="topAndBottom"></w:wrap></v:shape></wrapblock><BR clear=all><FONT size=3>用命令<FONT face="Times New Roman">x=constr('f ',x0)</FONT>。</FONT></P>
<P ><FONT face="Times New Roman" size=3>Examples</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Find values of x that minimize f(x)=-x1x2x3, starting at the point x = [10; 10; 10] and subject to the constraints 0</FONT>≤<FONT face="Times New Roman">x1+2x2+2x3</FONT>≤72.<p></p></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">-x1-2x2-2x3</FONT>≤0,<FONT face="Times New Roman">x1+2x2+2x3</FONT>≤72,<p></p></FONT></P>
<P ><FONT size=3>第一步:编写<FONT face="Times New Roman">M</FONT>文件</FONT></P>
<P ><FONT face="Times New Roman" size=3>function [f,g]=myfun(x)</FONT></P>
<P ><FONT face="Times New Roman" size=3>f=-x(1)*x(2)*x(3);</FONT></P>
<P ><FONT face="Times New Roman" size=3>g(1)=-x(1)-2*x(2)-2*x(3);</FONT></P>
<P ><FONT face="Times New Roman" size=3>g(2)=x(1)+2*x(2)+2*x(3)-72;</FONT></P>
<P ><FONT size=3>第二步:求解</FONT></P>
<P ><FONT size=3>在<FONT face="Times New Roman">MATLAB</FONT>工作窗中键入</FONT></P>
<P ><FONT face="Times New Roman" size=3>x0=[10,10,10];</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">x=constr('myfun',x0)</FONT>即可</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P> |