数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 4408|回复: 3

[转帖]【数 学 大 事 年 表】

[复制链接]
发表于 2004-3-14 16:33:38 | 显示全部楼层 |阅读模式
【数 学 大 事 年 表】
约公元前3000年 埃及象形数字
公元前2400~前1600年 早期巴比伦泥版楔形文字,采用60进位值制记数法。已知勾股定理
公元前1850~前1650年  埃及纸草书(莫斯科纸草书与莱茵德纸草书),使用10进非位值制记数法
公元前1400~前1100年 中国殷墟甲骨文,已有10进制记数法
周公(公元前11世纪)、商高时代已知勾三、股四、弦五
约公元前600年  希腊泰勒斯开始了命题的证明
约公元前540年 希腊毕达哥拉斯学派,发现勾股定理,并导致不可通约量的发现
约公元前500年   印度《绳法经》中给出√2相当精确的值,并知勾股定理
约公元前460年 希腊智人学派提出几何作图三大问题:化圆为方、三等分角和二倍立方
约公元前450年 希腊埃利亚学派的芝诺提出悖论
公元前430年 希腊安提丰提出穷竭法
约公元前380年 希腊柏拉图在雅典创办“学园”,主张通过几何的学习培养逻辑思维能力
公元前370年 希腊欧多克索斯创立比例论
约公元前335年 欧多莫斯著《几何学史》
中国筹算记数,采用十进位值制
约公元前300年 希腊欧几里得著《几何原本》,是用公理法建立演绎数学体系的最早典范
公元前287~前212年 希腊阿基米德,确定了大量复杂几何图形的面积与体积;给出圆周率的上下界;提出用力学方法推测问题答案,隐含近代积分论思想
公元前230年 希腊埃拉托塞尼发明“筛法”
公元前225年 希腊阿波罗尼奥斯著《圆锥曲线论》
约公元前150年 中国现存最早的数学书《算数书》成书(1983~1984年间在湖北江陵出土)
约公元前100年 中国《周髀算经》成书,记述了勾股定理
中国古代最重要的数学著作《九章算术》经历代增补修订基本定形(一说成书年代为公元 50~100年间),其中正负数运算法则、分数四则运算、线性方程组解法、比例计算与线性插值法盈不足术等都是世界数学史上的重要贡献
约公元62年 希腊海伦给出用三角形三边长表示面积的公式(海伦公式)
约公元150年 希腊托勒密著《天文学》,发展了三角学
约公元250年 希腊丢番图著《算术》,处理了大量不定方程问题,并引入一系列缩写符号,是古希腊代数的代表作
约公元263年 中国刘徽注解《九章算术》,创割圆术,计算圆周率,证明圆面积公式,推导四面体及四棱锥体积等,包含有极限思想
约公元300年 中国《孙子算经》成书,系统记述了筹算记数制,卷下“物不知数”题是孙子剩余定理的起源
公元320年 希腊帕普斯著《数学汇编》,总结古希腊各家的研究成果,并记述了“帕普斯定理”和旋转体体积计算法
公元410年 希腊许帕提娅,历史上第一位女数学家,曾注释欧几里得、丢番图等人的著作
公元462年 中国祖冲之算出圆周率在 3.1415926与3.1415927之间,并以22/7为约率,355/113为密率(现称祖率)
中国祖冲之和他的儿子祖暅提出“幂势既同则积不容异”的原理,现称祖暅原理,相当于西方的卡瓦列里原理(1635)
公元499年 印度阿耶波多著《阿耶波多文集》,总结了当时印度的天文、算术、代数与三角学知识。已知π=3.1416,尝试以连分数解不定方程
公元600年 中国刘焯首创等间距二次内插公式,后发展出不等间距二次内插法(僧一行,724)和三次内插法(郭守敬,1280)
约公元625年 中国王孝通著《缉古算经》,是最早提出数字三次方程数值解法的著作
公元628年 印度婆罗摩笈多著《婆罗摩历算书》,已知圆内接四边形面积计算法,推进了一、二次不定方程的研究
公元656年 中国李淳风等注释十部算经,后通称《算经十书》
公元820年 阿拉伯花拉子米著《代数学》,以二次方程求解为主要内容,12世纪该书被译成拉丁文传入欧洲
约公元870年 印度出现包括零的十进制数码,后传入阿拉伯演变为现今的印度-阿拉伯数码
约公元1050年 中国贾宪提出二项式系数表(现称贾宪三角和增乘开方法)
公元1100年 阿拉伯奥马·海亚姆首创用两条圆锥曲线的交点来表示三次方程的根
公元1150年 印度婆什迦罗第二著《婆什迦罗文集》为中世纪印度数学的代表作,其中给出二元不定方程x⒉=1+py⒉若干特解,对负数有所认识,并使用了无理数
公元1202年 意大利L.斐波那契著《算盘书》,向欧洲人系统地介绍了印度-阿拉伯数码及整数、分数的各种算法
公元1247年 中国秦九韶著《数书九章》,创立解一次同余式的大衍求一术和求高次方程数值解的正负开方术,相当于西方的霍纳法(1819)
公元1248年 中国李冶著《测圆海镜》,是中国现存第一本系统论述天元术的著作
约公元1250年   阿拉伯纳西尔丁·图西开始使三角学脱离天文学而独立,将欧几里得《几何原本》译为阿拉伯文
公元1303年 中国朱世杰著《四元玉鉴》,将天元术推广为四元术,研究高阶等差数列求和问题
公元1325年 英国T.布雷德沃丁将正切、余切引入三角计算
公元14世纪 珠算在中国普及
约公元1360年 法国N.奥尔斯姆撰《比例算法》,引入分指数概念,又在《论图线》等著作中研究变化与变化率,创图线原理,即用经、纬度(相当于横、纵坐标)表示点的位置并进而讨论函数图像
公元1427年 阿拉伯卡西著《算术之钥》,系统论述算术、代数的原理、方法,并在《圆周论》中求出圆周率17位准确数字
公元1464年 德国J.雷格蒙塔努斯著《论一般三角形》,为欧洲第一本系统的三角学著作,其中出现正弦定律
公元1482年 欧几里得《几何原本》(拉丁文译本)首次印刷出版
公元1489年 捷克韦德曼最早使用符号+、-表示加、减运算
公元1545年 意大利G.卡尔达诺的《大术》出版,载述了S·费罗(1515)、N.塔尔塔利亚(1535)的三次方程解法和L.费拉里(1544)的四次方程解法
公元1572年   意大利R.邦贝利的《代数学》出版,指出对于三次方程的不可约情形,通过虚数运算必可得三个实根,给出初步的虚数理论
公元1585年   荷兰S.斯蒂文创设十进分数(小数)的记法
公元1591年 法国F.韦达著《分析方法入门》,引入大量代数符号,改良三、四次方程解法,指出根与系数的关系,为符号代数学的奠基者
公元1592年 中国程大位写成《直指算法统宗》,详述算盘的用法,载有大量运算口诀,该书明末传入日本、朝鲜
公元1606年 中国徐光启和利玛窦合作将欧几里得《几何原本》前六卷译为中文
公元1614年 英国J.纳皮尔创立对数理论
公元1615年 德国开普勒著《酒桶新立体几何》,有求酒桶体积的方法,是阿基米德求积方法向近代积分法的过渡
公元1629年 荷兰吉拉尔最早提出代数基本定理法国P.de费马已得解析几何学要旨,并掌握求极大极小值方法
公元1635年 意大利(F.)B.卡瓦列里建立“不可分量原理”
公元1637年 法国R.笛卡儿的《几何学》出版,创立解析几何学法国P.de费马提出“费马大定理”
公元1639年 法国G.德扎格著《试论处理圆锥与平面相交情况初稿》,为射影几何先驱
公元1640年 法国B.帕斯卡发表《圆锥曲线论》
公元1642年 法国B.帕斯卡发明加减法机械计算机
公元1655年 英国J.沃利斯著《无穷算术》,导入无穷级数与无穷乘积,首创无穷大符号∞
公元1657年 荷兰C.惠更斯著《论骰子游戏的推理》,引入数学期望概念,是概率论的早期著作。在此以前B.帕斯卡、P.de费马等已由处理赌博问题而开始考虑概率理论
公元1665年 英国I.牛顿一份手稿中已有流数术的记载,这是最早的微积分学文献,其后他在《无穷多项方程的分析》(1669年撰,1711年发表)、《流数术方法与无穷级数》(1671年撰, 1736年发表)等著作中进一步发展流数术并建立微积分基本定理
公元1666年   德国G.W.莱布尼茨写成《论组合的技术》,孕育了数理逻辑思想
公元1670年   英国I.巴罗著《几何学讲义》,引进“微分三角形”概念
约公元1680年 日本关孝和始创和算,引入行列式概念,开创“圆理”研究
公元1684年 德国G.W.莱布尼茨在《学艺》上发表第一篇微分学论文《一种求极大极小与切线的新方法》,两年后又发表第一篇积分学论文,创用积分符号
公元1687年 英国I. 牛顿的 《自然哲学的数学原理》出版,首次以几何形式发表其流数术
公元1689年   瑞士约翰第一·伯努利提出“最速降曲线”问题,后导致变分法的产生法国 G.-F.-A.de 洛必达出版《无穷小分析》,其中载有求极限的洛必达法则
公元1707年 英国I.牛顿出版《广义算术》,阐述了代数方程理论
公元1713年 瑞士雅各布第一·伯努利的《猜度术》出版,载有伯努利大数律
公元1715年 英国B.泰勒出版《正的和反的增量方法》,内有他1712年发现的把函数展开成级数的泰勒公式
公元1722年   法国A.棣莫弗给出公式(cos φ+i sin φ)n =cos nφ+ i sin nφ
公元1730年   苏格兰J.斯特林发表《微分法,或关于无穷级数的简述》,其中给出了Ν!的斯特林公式
公元1731年   法国A.-C.克莱罗著《关于双重曲率曲线的研究》,开创了空间曲线的理论
公元1736年   瑞士L.欧拉解决了柯尼斯堡七桥问题
公元1742年   英国C.马克劳林出版《流数通论》,试图用严谨的方法来建立流数学说,其中给出了马克劳林展开
公元1744年   瑞士L.欧拉著《寻求具有某种极大或极小性质的曲线的技巧》,标志着变分法作为一个新的数学分支的诞生
公元1747年   法国J.le R. 达朗贝尔发表《弦振动研究》,导出了弦振动方程,是偏微分方程研究的开端
公元1748年   瑞士L.欧拉出版《无穷小分析引论》,与后来发表的《微分学》(1755)和《积分学》(1770)一起,以函数概念为基础综合处理微积分理论,给出了大量重要的结果,标志着微积分发展的新阶段
公元1750年   瑞士G.克莱姆给出解线性方程组的克莱姆法则,瑞士L.欧拉发表多面体公式:V-E+F =2
公元1770年   法国J.-L.拉格朗日深入探讨代数方程根式求解问题,考虑有理函数当变量发生置换时所取值的个数,成为置换群论的先导,德国J.H.朗伯开创双曲函数的全面研究
公元1777年   法国G.-L.L.de布丰提出投针问题,是几何概率理论的早期研究
公元1779年   法国□.贝祖著《代数方程的一般理论》,系统论述消元法理论
公元1788年   法国J.-L.拉格朗日的《分析力学》出版,使力学分析化,并总结了变分法的成果
公元1794年   法国A.-M.勒让德的《几何学基础》出版,是当时标准的几何教科书,法国建立巴黎综合工科学校和巴黎高等师范学校
公元1795年   法国G.蒙日发表《关于把分析应用于几何的活页论文》,成为微分几何学先驱
公元1797年   法国J.-L.拉格朗日著《解析函数论》,主张以函数的幂级数展开为基础建立微积分理论,挪威C.韦塞尔最早给出复数的几何表示
公元1799年 法国G.蒙日出版《画法几何学》,使画法几何成为几何学的一个专门分支,德国C.F.高斯给出代数基本定理的第一个证明
公元1799~1825年   法国P.-S.拉普拉斯的5卷巨著《天体力学》出版,其中包含了许多重要的数学贡献,如拉普拉斯方程、位势函数等
公元1801年   德国C.F.高斯的《算术研究》出版,标志着近代数论的起点
公元1802年   法国J.E.蒙蒂克拉与J.de拉朗德合撰的《数学史》共4卷全部出版,成为最早的较系统的数学史著作
公元1807年   法国J.-B.-J.傅里叶在热传导研究中提出任意函数的三角级数表示法(傅里叶级数),他的思想总结在1822年发表的《热的解析理论》中
公元1810年   法国J.-D.热尔岗创办《纯粹与应用数学年刊》,这是最早的专门数学期刊
公元1812年   英国剑桥分析学会成立,法国 P.-S.拉普拉斯著《概率的解析理论》,提出概率的古典定义,将分析工具引入概率论
公元1814年   法国 A.-L.柯西宣读复变函数论第一篇重要论文《关于定积分理论的报告》(1827年正式发表),开创了复变函数论的研究
公元1817年   捷克B.波尔查诺著《纯粹分析的证明》,首次给出连续性、导数的恰当定义,提出一般级数收敛性的判别准则
公元1818年   法国S.-D.泊松导出波动方程解的“泊松公式”
公元1821年   法国A.-L.柯西出版《代数分析教程》,引进不一定具有解析表达式的函数概念;独立于B.波尔查诺提出极限、连续、导数等定义和级数收敛判别准则,是分析严密化运动中第一部影响深远的著作
公元1822年   法国J.-V.彭赛列著《论图形的射影性质》,奠定了射影几何学基础
公元1826年   挪威N.H.阿贝尔著《关于很广一类超越函数的一个一般性质》,开创了椭圆函数论研究德国A.L.克雷尔创办《纯粹与应用数学杂志》
法国J.-D.热尔岗与J.-V.彭赛列各自建立对偶原理
公元1827年   德国C.F.高斯著《关于曲面的一般研究》,开创曲面内蕴几何学德国A.F.麦比乌斯著《重心演算》,引进齐次坐标,与J.普吕克等开辟了射影几何的代数方向
公元1828年   英国G.格林著《数学分析在电磁理论中的应用》,发展位势理论
公元1829年 德国C.G.J.雅可比著《椭圆函数论新基础》,是椭圆函数理论的奠基性著作,俄国Н.И.罗巴切夫斯基发表最早的非欧几何论著《论几何基础》
公元1829~1832年   法国E.伽罗瓦彻底解决代数方程根式可解性问题,确立了群论的基本概念
公元1830年 英国G.皮科克著《代数通论》,首创以演绎方式建立代数学,为代数中更抽象的思想铺平了道路
公元1832年   匈牙利J.波尔约发表《绝对空间的科学》,独立于Н.И.罗巴切夫斯基提出了非欧几何思想,瑞士J.施泰纳著《几何形的相互依赖性的系统发展》,利用射影概念从简单结构构造复杂结构,发展了射影几何
公元1836年   法国J.刘维尔创办法文的《纯粹与应用数学杂志》
公元1837年   德国P.G.L.狄利克雷提出现今通用的函数定义(变量之间的对应关系)
公元1840年   法国 A.-L.柯西证明了微分方程初值问题解的存在性
公元1841~1856年   德国K.(T.W.)外尔斯特拉斯关于分析严密化的工作,主张将分析建立在算术概念的基础之上,给出极限的ε-δ说法和级数一致收敛性概念;同时在幂级数基础上建立复变函数论
公元1843年   英国W.R.哈密顿发现四元数
公元1844年   德国E.E.库默尔创立理想数的概念,德国H.G.格拉斯曼出版《线性扩张论》。建立Ν个分量的超复数系,提出了一般的Ν维几何的概念
公元1847年   德国K.G.C.von 施陶特著《位置的几何学》,不依赖度量概念建立射影几何体系
公元1849~1854年   英国的A.凯莱提出抽象群概念 
公元1851年 德国(G.F.)B.黎曼著《单复变函数的一般理论基础》,给出单值解析函数的黎曼定义,创立黎曼面的概念,是复变函数论的一篇经典性论文
公元1854年   德国(G.F.)B.黎曼著《关于几何基础的假设》,创立Ν维流形的黎曼几何学,英国G.布尔出版《思维规律的研究》,建立逻辑代数(即布尔代数)
公元1855年   英国A.凯莱引进矩阵的基本概念与运算
公元1858年   德国(G.F.)B.黎曼给出ζ函数的积分表示与它满足的函数方程,提出黎曼猜想德国A. F. 麦比乌斯发现单侧曲面(麦比乌斯带)
公元1859年   中国李善兰与英国的伟烈亚力合译的《代数学》、《代微积拾级》以及《几何原本》后9卷中文本出版,这是翻译西方近代数学著作的开始,中国李善兰建立了著名的组合恒等式(李善兰恒等式)
公元1861年 德国K.(T.W.)外尔斯特拉斯在柏林讲演中给出连续但处处不可微函数的例子
公元1863年   德国P.G.L.狄利克雷出版《数论讲义》,是解析数论的经典文献
公元1865年   伦敦数学会成立,是历史上第一个成立的数学会
公元1866年   俄国П.Л.切比雪夫利用切比雪夫不等式建立关于独立随机变量序列的大数律,成为概率论研究的中心课题
公元1868年   意大利E.贝尔特拉米著《论非欧几何学的解释》,在伪球面上实现罗巴切夫斯基几何,这是第一个非欧几何模型
德国(G.F.)B.黎曼的《用三角级数表示函数的可表示性》正式发表,建立了黎曼积分理论
公元1871年   德国(C.)F.克莱因在射影空间中适当引进度量而得到双曲几何与椭圆几何,这是不用曲面而获得的非欧几何模型
德国G.(F.P.)康托尔在三角级数表示的惟一性研究中首次引进了无穷集合的概念,并在以后的一系列论文中奠定了集合论的基础
公元1872年   德国(C.)F.克莱因发表《埃尔朗根纲领》,建立了把各种几何学看作为某种变换群的不变量理论的观点,以群论为基础统一几何学
实数理论的确立:G.(F.P.)康托尔的基本序列论;J.W.R.戴德金的分割论;K.(T.W.)外尔斯特拉斯的单调序列论
公元1873年   法国C.埃尔米特证明e的超越性
公元1874年   挪威M.S.李开创连续变换群的研究,现称李群理论
公元1879年   德国(F.L.)G.弗雷格出版《概念语言》,建立量词理论,给出第一个严密的逻辑公理体系,后又出版《算术基础》(1884)等著作,试图把数学建立在逻辑的基础上
公元1881~1884年   德国(C.)F.克莱因与法国(J.-)H.庞加莱创立自守函数论
公元1881~1886年   法国(J.-)H.庞加莱关于微分方程确定的曲线的论文,创立微分方程定性理论
公元1882年 德国M.帕施给出第一个射影几何公理系统,德国F.von林德曼证明π的超越性
公元1887年   法国(J.-)G.达布著《曲面的一般理论》,发展了活动标架法
公元1889年   意大利G.皮亚诺著《算术原理新方法》,给出自然数公理体系
公元1894年   荷兰T.(J.)斯蒂尔杰斯发表《连分数的研究》,引进新的积分(斯蒂尔杰斯积分)
公元1895年   法国(J.-)H.庞加莱著《位置几何学》,创立用剖分研究流形的方法,为组合拓扑学奠定基础,德国F.G.弗罗贝尼乌斯开始群的表示理论的系统研究
公元1896年   德国H.闵科夫斯基著《数的几何》,创立系统的数的几何理论,法国J.(-S.)阿达马与瓦里-布桑证明素数定理
公元1897年   第一届国际数学家大会在瑞士苏黎世举行
公元1898年   英国K.皮尔逊创立描述统计学
公元1899年   德国D.希尔伯特出版《几何基础》,给出历史上第一个完备的欧几里得几何公理系统,开创了公理化方法,并预示了数学基础的形式主义观点
公元1900年   德国D.希尔伯特在巴黎第二届国际数学家大会上作题为《数学问题》的报告。提出了23个著名的数学问题

[fly]---------------------      可能有些不全:知道者给帖[/fly]
发表于 2004-3-15 02:56:37 | 显示全部楼层
公元年 1900~ 1960年

  1900年

  德国数学家希尔伯特,提出数学尚未解决的23个问题,引起了20世纪许多数学家的关注。
以下是引用David_Hilbert在2004-3-6 19:04:01的发言:
……
  1. Cantor's problem of the cardinal number of the continuum
  2. The compatibility of the arithmetical axioms
  3. The equality of two volumes of two tetrahedra of equal bases and equal altitudes
  4. Problem of the straight line as the shortest distance between two points
  5. Lie's concept of a continuous group of transformations without the assumption of
     the differentiability of the functions defining the group
  6. Mathematical treatment of the axioms of physics
  7. Irrationality and transcendence of certain numbers
  8. Problems of prime numbers
  9. Proof of the most general law of reciprocity in any number field
10. Determination of the solvability of a diophantine equation
11. Quadratic forms with any algebraic numerical coefficients
12. Extension of Kroneker's theorem on abelian fields to any algebraic realm of
     rationality
13. Impossibility of the solution of the general equation of the 7-th degree by
     means of functions of only two arguments
14. Proof of the finiteness of certain complete systems of functions
15. Rigorous foundation of Schubert's enumerative calculus
16. Problem of the topology of algebraic curves and surfaces
17. Expression of definite forms by squares
18. Building up of space from congruent polyhedra
19. Are the solutions of regular problems in the calculus of variations always
     necessarily analytic?
20. The general problem of boundary values
21. Proof of the existence of linear differential equations having a prescribed
     monodromic group
22. Uniformization of analytic relations by means of automorphic functions
23. Further development of the methods of the calculus of variations
……

  1901年

  德国数学家希尔伯特,严格证明了狄利克莱原理,开创了变分学的直接方法,在工程技术的级拴问题中有很多应用。

  德国数学家舒尔、弗洛伯纽斯,首先提出群的表示理论。此后,各种群的表示理论得到大量研究。

  意大利数学家里齐、齐维塔,基本上完成张量分析,又名绝对微分学。确立了研究黎曼几何和相对论的分析工具。

  法国数学家勒贝格,提出勒贝格测度和勒贝格积分,推广了长度、面积积分的概念。

  1903年

  英国数学家贝·罗素,发现集合论中的罗素悖论,引发第三次数学危机。   瑞典数学家弗列特荷姆,建立线性积分方程的基本理论,是解决数学物理问题的数学工具,并为建立泛函分析作出了准备。

  1906年

  意大利数学家赛维里,总结了古典代数几何学的研究。

  法国数学家弗勒锡、匈牙利数学家里斯,把由函数组成的无限集合作为研究对象,引入函数空间的概念,并开始形成希尔伯特空间。这是泛函分析的发源。

  德国数学家哈尔托格斯,开始系统研究多个自变量的复变函数理论。

  俄国数学家马尔可夫,首次提出“马尔可夫链”的数学模型。

  1907年   

  德国数学家寇贝,证明复变函数论的一个基本原理——黎曼共形映照定理。

  美籍荷兰数学家布劳威尔,反对在数学中使用排中律,提出直观主义数学。

  1908年

  德国数学家金弗里斯,建立点集拓扑学。

  德国数学家策麦罗,提出集合论的公理化系统。

  1909年

  德国数学家希尔伯特,解决了数论中著名的华林问题。

  1910年

  德国数学家施坦尼茨,总结了19世纪末20世纪初的各种代数系统,如群、代数、域等的研究,开创了现代抽象代数。

  美籍荷兰数学家路·布劳威尔,发现不动点原理,后来又发现了维数定理、单纯形逼近法、使代数拓扑成为系统理论。   

   英国数学家背·罗素、卡·施瓦兹西德,出版《数学原理》三卷,企图把数学归纳到形式逻辑中去,是现代逻辑主义的代表著作。

  1913年

  法国的厄·加当和德国的韦耳完成了半单纯李代数有限维表示理论,奠定了李群表示理论的基础。这在量子力学和基本粒子理论中有重要应用。

  德国的韦耳研究黎曼面,初步产生了复流形的概念。

  1914年

  德国的豪斯道夫提出拓扑空间的公理系统,为一般拓扑学建立了基础。

  1915年

  瑞士美籍德国人爱因斯坦和德国的卡·施瓦茨西德把黎曼几何用于广义相对论,解出球对称的场方程,从而可以计算水星近日点的移动等问题。   

  1918年

  英国的哈台、立笃武特应用复变函数论方法来研究数论,建立解析数论。

  丹麦的爱尔兰为改进自动电话交换台的设计,提出排队论的数学理论。

  希尔伯特空间理论的形成(匈牙利 里斯)。

  1919年

  德国的亨赛尔建立P-adic数论,这在代数数论和代数几何中有重要用。

  1922年

  德国的希尔伯特提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论。

  1923年

  法国的厄·加当提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端

  法国的阿达玛提出偏微分方程适定性,解决二阶双曲型方程的柯西问题()。

  波兰的巴拿哈提出更广泛的一类函数空间——巴拿哈空间的理论()。

  美国的诺·维纳提出无限维空间的一种测度——维纳测度,这对概率论和泛函分析有一定作用。

  1925年

  丹麦的哈·波尔创立概周期函数。

  英国的费希尔以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法。

  1926年

  德国的纳脱大体上完成对近世代数有重大影响的理想理论。

  1927年

  美国的毕尔霍夫建立动力系统的系统理论,这是微分方程定性理论的一个重要方面。

  1928年

  美籍德国人 理·柯朗提出解偏微分方程的差分方法。

  美国的哈特莱首次提出通信中的信息量概念。

  德国的格罗许、芬兰的阿尔福斯、苏联的拉甫连捷夫提出拟似共形映照理论,这在工程技术上有一定应用。

  1930年

  美国的毕尔霍夫建立格论,这是代数学的重要分支,对射影几何、点集论及泛函分析都有应用。   

  美籍匈牙利人冯·诺伊曼提出自伴算子谱分析理论并应用于量子力学。

  1931年

  瑞士的德拉姆发现多维流形上的微分型和流形的上同调性质的关系,给拓扑学以分析工具。

  奥地利的哥德尔证明了公理化数学体系的不完备性。

  苏联的柯尔莫哥洛夫和美国的费勒发展了马尔可夫过程理论。

  1932年

  法国的亨·嘉当解决多元复变函数论的一些基本问题。

  美国的毕尔霍夫、美籍匈牙利人冯·诺伊曼建立各态历经的数学理论。

  法国的赫尔勃兰特、奥地利的哥德尔、美国的克林建立递归函数理论,这是数理逻辑的一个分支,在自动机和算法语言中有重要应用。   

  1933年

  匈牙利的奥·哈尔提出拓扑群的不变测度概念。

  苏联的柯尔莫哥洛夫提出概率论的公理化体系。

  美国的诺·维纳、丕莱制订复平面上的傅立叶变式理论。

  1934年

  美国的莫尔斯创建大范围变分学的理论,为微分几何和微分拓扑提供了有效工具。

  美国的道格拉斯等解决极小曲面的基本问题——普拉多问题,即求通过给定边界而面积为最小的曲面。

  苏联的辛钦提出平稳过程理论。

  1935年

  波兰的霍勒维奇等在拓扑学中引入同伦群,成为代数拓扑和微分拓扑的重要工具。   法国的龚贝尔开始研究产品使用寿命和可靠性的数学理论。

  1936年

  德国寇尼克系统地提出与研究图的理论,美国的贝尔治等对图的理论有很大的发展。50年代以后,由于在博弈论、规划论、信息论等方面的发展,而得到广泛应用。

  现代的代数几何学开始形成。(荷兰 范德凡尔登,法国外耳,美国查里斯基,意大利 培·塞格勒等)

  英国的图灵、美国的邱吉、克林等提出理想的通用计算机概念,同时建立了算法理论。

  美籍匈牙利人 冯·诺伊曼建立算子环论,可以表达量子场论数学理论中的一些概念。

  苏联的索波列夫提出偏微分方程中的泛函分析方法。

  1937年

  美国的怀特尼证明微分流形的嵌入定理,这是微分拓扑学的创始。

  苏联的彼得洛夫斯基提出偏微分方程组的分类法,得出某些基本性质。

  瑞士的克拉默开始系统研究随机过程的统计理论。

  1938年

  布尔巴基丛书《数学原本》开始出版,企图从数学公理结构出发,以非常抽象的方式叙述全部现代数学(法国 布尔巴基学派)。

  1940年

  美国的哥德尔证明连续统假说在集合论公理系中的无矛盾性。   英国的绍司威尔提出求数值解的松弛方法

  苏联的盖尔方特提出交换群调和分析的理论。

  1941年

  美国的霍奇定义了流形上的调和积分,并用于代数流形,成为研究流形同调性质的分析工具。

  苏联的谢·伯恩斯坦、日本的伊藤清开始建立马尔可夫过程与随机微分方程的联系。

  苏联的盖尔芳特创立赋范环理论,主要用于群上调和分析和算子环论。

  1942年

  美国的诺·维纳、苏联的柯尔莫哥洛夫开始研究随机过程的预测,滤过理论及其在火炮自动控制上的应用,由此产生了“统计动力学’。

  1943年

  中国的林士谔提出求代数方程数字解的林士谔方法。

  1944年

  美籍匈牙利人冯·诺伊曼等建立了对策论,即博弈论。

  1945年

  法国的许瓦茨推广了古典函数概念,创立广义函数论,对微分方程理论和泛函分析有重要作用。

  美籍华人陈省身建立代数拓扑和微分几何的联系,推进了整体几何学的发展。

  1946年

  美国莫尔电子工程学校和宾夕法尼亚大学试制成功第一台电子计算机ENIAC。(设计者为埃克特、莫希莱等人)。

  法国的外耳建立现代代数几何学基础。

  中国的华罗庚发展了三角和法研究解析数论。

  苏联的盖尔芳特、诺依玛克建立罗伦兹群的表示理论。

  1947年

  美国的埃·瓦尔特创立统计的序贯分析法。

  1948年

  英国的阿希贝造出稳态机,能在各种变化的外界条件下自行组织,以达到稳定状态。鼓吹这是人造大脑的最初雏型、机器能超过人等观点。

  美国的诺·维纳出版《控制论》,首次使用控制论一词

  美国的申农提出通信的数学理论。

  美籍德国人弗里得里希斯、理·柯朗总结了非线性微分方程在流体力学方面的应用,推进了这方面的研究。

  波兰的爱伦伯克、美国的桑·麦克伦提出范畴论,这是代数中一种抽象的理论,企图将数学统—于某些原理

  苏联的康脱洛维奇将泛函分析用于计算数学。

  1949年

  开始确立电子管计算机体系,通称第一代计算机。英国剑桥大学制成第一台通用电子管计算机EDSAC。

  1950年

  英国的图灵发表《计算机和智力》一文,提出机器能思维的观点。

  美国的埃·瓦尔特提出统计决策函数的理论。

  英国的大·杨提出解椭圆型方程的超松弛方法,这是目前电子计算机上常用的方法。

  美国的斯丁路特、美籍华人陈省身、法国的艾勒斯曼共同提出纤维丛的理论。   

  1951年

  五十年代以来,“组合数学”获得迅速发展,并应用于试验设计、规划理论、网络理论、信息编码等。(美国 霍夫曼,马·霍尔等)

  1952年

  美国的蒙哥马利等证明连续群的解析性定理(即希尔伯特第五问题)。

  1953年

  美国的基费等提出优选法,并先后发展了多种求函数极值的方法。

  1955年

  制定同调代数理论(法国 亨·加当、格洛辛狄克,波兰 爱伦伯克)。

  美国的隆姆贝格提出求数值积分的隆姆贝方法,这是目前电子计算机上常用的一种方法。

  瑞典的荷尔蒙特等制定线性偏微分算子的一般理论。

  美国的拉斯福特等提出解椭圆形或双线型偏微分方程的交替方向法。

  英国的罗思解决了代数数的有理迫近问题。

  1956年

  提出统筹方法(又名计划评审法),是一种安排计划和组织生产的数学方法。美国杜邦公司首先采用。

  英国的邓济希等提出线性规划的单纯形方法。

  苏联的道洛尼钦提出解双曲型和混合型方程的积分关系法。

  1957年

  发现最优控制的变分原理(苏联 庞特里雅金)。

  美国的贝尔曼创立动态规划理论,它是使整个生产过程达到预期最佳目的的一种数学方法。   美国的罗森伯拉特等以美国康纳尔实验室的“感知器”的研究为代表,开始迅速发展图象识别理论。

  1958年

  创立算法语言ALGOL(58),后经改进又提出ALGOL(60),ALGOL(68)等算法语言,用于电子计算机程序自动化。(欧洲GAMM小组,美国ACM小组)

  中国科学院计算技术研究所试制成功中国第一台通用电子计算机。

  1959年

  美国国际商业机器公司制成第一台晶体管计算机“IBM 7090”,第二代计算机——半导体晶体管计算机开始迅速发展。

  1959~1960年,伽罗华域论在编码问题上的应用,发明 BCH码。(法国 霍昆亥姆,美国 儿·玻色,印度 雷·可都利)

  1960年

  美国的卡尔门提出数字滤波理论,进一步发展了随机过程在制导系统中的应用。

  苏联的克雷因、美国的顿弗特建立非自共轭算子的系统理论。





现代数学的几个显著特点是:

  纯数学更加抽象,分支增多而又互相渗透。
  现代数学以集合论为基础,以结构为对象。
  重视数学基础和数学哲学问题的深入研究。
  数学公理化是数学家追求的重要目标之一。
  新的分支大量产生,研究更为深入、广泛。
  电子计算机的产生与发展改变着数学的历史。








[此贴子已经被作者于2004-3-14 19:43:17编辑过]

发表于 2004-3-15 03:44:35 | 显示全部楼层
详见http://www.czkp.org.cn/nbeml/sxnp-1.htm
或http://www.fxzx.fp.net.cn/teacher/jhw/shihaigouchen/shuxueshi/nianpu/nianpu-1.htm
发表于 2004-3-20 23:18:01 | 显示全部楼层
+请问有没有数学建模的年事表呢,谢谢
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-11-26 20:47 , Processed in 0.056753 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表