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Analysis of a Dirty Motor Pool 
Richard Jardine, Michael Kelley, Joseph Myers 

 
 

A topic of enduring concern to military operators and logisticians is the 
environmental signature left by both field and garrison operations. 
 
This paper details one of the scenarios which we use in our engineering math 
course to excite and motivate future environmental engineers about uses of 
mathematics in their discipline.  This scenario illustrates the use of vector 
calculus, partial differential equations (PDE’s), and numerical methods, along 
with a computer algebra system (MathCad) and spreadsheet (Excel), in 
modeling the advection and diffusion of an oil spill. 
 
Working through this scenario exercises the following mathematical skills: 

- Parameterization of space curves, using vector differential operators, 
and using the vector integral theorems 

- Modeling using PDE’s 
- Solving the diffusion equation via separation of variables 
- Making engineering value judgments (such as how much seepage is 

“appreciable”, vs. nonzero) 
- When and how to use the dominant eigenmode as a long-term 

approximation 
    - Refining a model to incorporate new effects 

- Numerically (via finite differences and a spreadsheet) solving more 
complex variants of the diffusion equation  

- Graphing solution curves and drawing inferences 
 
 
Scenario 
 
You are a Battalion Executive Officer stationed in Korea.  Among your many 
duties, you are in charge of vehicle maintenance and motor pool operations for 
the battalion.  The Assistant Division Commander for Support (ADC(S)) is flying 
over your battalion motor pool area one morning, and happens to notice some 
ground discoloration near the Brigade POL (Petroleum, Oils, and Lubricants) 
Tank Farm, for which you have primary responsibility.  He later calls your 
commander and you and tells you to investigate.  Your initial check shows that 
one of the fuel storage tanks has started to leak at a seam.  It is a large-area 
ground oil spill with continued leakage (maintaining the surface at a constant 
level of contaminant concentration).  The contamination is being advected by 
surface runoff and is also diffusing downward toward bedrock level.  The Facility 
Engineers estimate that it will take 72 hours to repair the pipe and stop the leak.  
The local civilian Environmental Officer immediately calls and demands to know 



 42

where runoff will carry the contamination, to what depth contaminated soil will 
have to be excavated after the leak has been stopped, and what the effect would 
be on the spread of contaminant if the weather is rainy over the next week.   
 
 
Tracking Avective Processes and Runoff 
 
You decide to analyze the quickest acting process first:  runoff. A quick survey of 
the terrain shows that the major runoff for the contaminant appears to be the 
stream flowing from near the spill (point A on the map below) toward point B, 
near the neighboring town.  The vertical grid lines are 1000m apart, the 
horizontal grid lines are 750 m apart, and contour lines are at elevations as 
marked on the map.   

 
 

Figure 1:  Path of stream from at Point A to B. 
 
 
Example 1:  Mathematically model the path in order to determine the flow of the 
stream. 
 
Solution:  We begin by using Mathcad to plot a model the stream. We write a 
parametric vector function for the position of a marker particle in the stream as it 
moves from A to B.  A possible parameterization of the streambed is the 
parametric equation 10,130800)15sin7sin()( 2 ≤≤+++= tttttet t kjir  (where t 
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is measured in seconds and zyx ,,  are measured in meters).  As graphically 
illustrated in Figure 2, this yields a good approximation to the path of the stream.  
 
 
 
 

 
 
 
 

Figure 2:  Parameterized representation of the Advecting Stream 
 

Example 2:  Given the above position function of the stream, with A at 1=t  and 
B at 0=t , you measure and approximate that the water's velocity field is in fact 

kjiv 1.02.01.0 −−= .  Find the flow of water (as defined in Finney/Thomas, 
Revised Printing, p.952) moving in the one-dimensional model of the stream 
between A and B.  Describe what this means physically, including the sign of the 
result. 
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Solution:  The flow of the advecting stream is calculated via the line integral 
∫ ⋅
C

drv for the given velocity field, yielding:    

./6.215)()(1
0 smdtttd

C
−=∫ ′⋅=∫ ⋅ rvrv ρρ  

This is a combined measure that indicates both how far and how fast the fluid is 
moving.  It is negative, which means that the net flow velocity is in the direction 
from A toward B.  The magnitude, obtained by dividing the total flow by the 
length of the stream, is of about the correct order, as the Colorado River has a 
flow of from 300 to 1000 m3/s. 
 
We now seek to determine the effect of vorticity on contaminant monitoring 
equipment placed in bore holes that we dig at several specified locations along 
the length of the stream.  Several boreholes have been dug near the spill site 
and instruments placed in the wells to obtain data on the effect of the spill.  (See 
figure below).  Each hole is cylindrically shaped, 2 meters deep and 20 cm in 
diameter.  In one of the holes, the velocity field is measured to be 

kjiv zyx 3−+=  m/s (with origin centered at the bottom of the hole).  
 
   Landfill   
     Test wells 
 
 
 
         Aquifer 
 
 
 
 

Figure 3:  Bore holes for contaminant measuring equipment. 
 
 
Example 3:  At what rate is water entering the hole from above? 
 
Solution:  The flux of water into the hole is given by  

∫∫ −=−=∫∫⋅−=∫∫−=∫∫ ⋅>−<=⋅
A AAA

smAdAzdAdAzyxdA 31885.062333,, knv . 

The sign is negative since net flux is opposite in direction to the outward normal 
vector; i.e., net flux is downward through the upper surface. 
 
Example 4:  Are there any sources or sinks in the interior of the hole?  Describe. 
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Solution:  From the velocity field of the fluid in the borehole, we calculate that 
the divergence at all points is 1311 −=−+=⋅∇ v  per sec.  Since the divergence 
is negative at all points, this indicates that there is a sink at every point in the 
hole.  This might occur if the density of the fluid decreased after it entered the 
hole, perhaps due to warming by the equipment in the hole.   
 
Example 5:  At what rate is water entering the hole from all sides (including the 
porous sides and bottom, as well as the top)?  
 
Solution:  The total flux of fluid into the hole can be calculated by transforming 
the closed surface integral ∫∫ ⋅

σ
σdnv  into the volume integral ∫∫∫ ⋅∇

V
dVv  via 

Stoke’s Theorem, yielding VdV
V

⋅−=−∫∫∫ 11 ;  this gives a net flux into the hole of 

− . /06275 3m s .   
 
In another of the test wells, ground water rotates around the center of the hole 
(within the plane z = 1) with velocity )( jiv xy −= ω , where ω , the angular 
velocity, is 0.25 rad/s.  If the circulation in the well exceeds 15 m2/s, the data 
collected by instruments in the well will be corrupted.   
 
Example 6:  Will the empirical results obtained from that hole be valid? 
 
Solution:  The flow circulation around the midpoint plane of the cylindrical hole 
can be found by transforming the line integral ∫ ⋅

C
drv into the double integral 

∫∫ ×∇
A

dVv  via Gauss’ Theorem.  This yields: 

∫∫ −=−=⋅>−<
A

AdA 0157.022,0,0 ωω k m2/s. 

The circulation is much less than the critical value of the equipment; therefore, 
collected data will be reliable. 
 
 
Calculating Downward Diffusion 
 
You now turn your attention to the contamination of the ground underneath the 
spill due to diffusion.  You begin with the following assumptions: 

- The spill is uniform over an area large enough such that there is 
diffusion only in the vertical direction. 

- The soil is homogeneous with a diffusion rate of 0.3 ft2/hr. 
- There is no advection. 
- The leak is such that it maintains a constant concentration of 5000 g/ft3 

over the surface. 
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- There is bedrock beginning at a depth of 20 ft which is impervious to 
fuel. 

 
Example 7:  Determine how much soil must be excavated. 
 
Solution:  We begin by modeling the contaminant diffusion by the equation 

2
2

3.0
t

u
t

u
∂

∂=∂
∂ , which we will hereafter abbreviate as xxt uu 3.0= , where u  is 

the local concentration of contaminant, along with boundary conditions 
u t( , )0 5000=  (constant concentration in the spill area), u tx ( , )20 0=  
(impermeable at the permafrost level), and initial condition u x( , )0 0=  (initially 
clean).  Separation of variables yields the infinite series solution  

u x t n
n

( , ) = − −
=

∞

∑5000 20000 1 2 1
1

π Sin (( ) )2 1 40n x− π exp )40)12(3.0( 22 tn π−− . 

Plots of contaminant concentration at fixed depths over time and at fixed times 
as functions of depth are shown in Figure 4. 
 
 

 
Figure 4:  Contaminant concentration at fixed depths and fixed times. 

 
 
The answer to the question “how much to excavate?” is:  it depends on how long 
you wait and what concentration of contaminant is acceptable.  For example, 
waiting 72 hours means that we will have to excavate to bedrock level (20 ft) if 
we cannot tolerate a contaminant concentration greater than 500 g/m3.  What 
level of contaminant concentration is unacceptable?  If we are interested only in 
the physical effects of contamination, then chemistry and physiology can 
sometimes give us an answer;  those disciplines can help us estimate at what 
level will the contaminant show up as a marginal health hazard in our local 

Solution at Fixed Depths over Time: Solution at Fixed Times as a Function of 
Depth:

t2 0 .1, 72.. x2 0 0.1, 20..

f 5 t2, 50,( )

f 10 t2, 50,( )

f 15 t2, 50,( )

f 20 t2, 50,( )

t2
0 50

0

2000

4000

f x2 18, 50,( )

f x2 36, 50,( )

f x2 54, 50,( )

f x2 72, 50,( )

x2
0 10 20

0

2000

4000



 47

drinking water or in the aquifer for the larger community, and that is where the 
scientist would be inclined to draw the line.  However, from a psychological 
standpoint, local residents may take decades to accept the fact that their homes 
sit and their children play in the dirt above contaminants, even if the 
concentration is well below the physiological threshold.  Economically, property 
values may suffer for decades for the same reason.  Legally, owners and 
developers may carry the additional risk of being held liable for random health 
problems, even if not clearly related to the presence of contaminants.  
Obviously, the decision as to what constitutes a “tolerable” concentration greatly 
effects the results to our question, and is as much (usually more) a political 
decision as it is a scientific one.  (An important learning point for engineers!) 
 
In many situations involving diffusion (such as under land fills), environmental 
engineers are often concerned only with solutions at large times (often on the 
order of decades), and not with transients over short time scales.  We can derive 
such a simpler long term solution to our situation above by recognizing that 
higher order modes become increasingly less important over time, yielding (for 
example) the much simpler two term approximation for the contaminant 
concentration at long times: 
u x t( , ) = −5000 20000 πSin(πx 40 ) exp( 1600/3.0 2tπ− ). 
 
 
Calculating Downward Diffusion with Advection 
 
We have analyzed the pure diffusion case;  now we have to deal with the 
addition to the model of another physical process;  namely, advection of the 
contaminant downward due to rainfall. 
 
Example 8:  Determine whether rainfall will have any effect on our results on the 
downward diffusion of contaminant.   
 
Solution: Analytic techniques appear harder in this case, so we turn to a 
numerical method. To predict the differences that would be caused by rainwater 
advection (downward) if we have rain, we consider a model that incorporates 
both diffusion and advection:  xxxt uuu 01.03.0 −= , along with the previous 
boundary and initial conditions.   
 
We difference the equation using forward first differences in time and centered 
first and second differences in space, resulting in the algorithm (which we 
abbreviate as the FTCS algorithm, for forward-time, centered-space):   
 

)(201.0)2(3.0 ,1,1,1,,12,1, kjkjkjkjkjkjkj uux
tuuu

x
tuu −+−−+ −∆

∆−+−∆
∆+= .     (1) 
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We implement this in a spreadsheet, as demonstrated in the figure below.  
Spatial grid points are numbered horizontally in dark shade, temporal grid points 
vertically in dark shade, initial condition horizontally in light shade, boundary 
conditions vertically in light shade. 

 
Figure 5:  A spreadsheet (Excel) implementation of the finite difference (FTCS) solution. 

 
 

We can then graphically compare the effects of diffusion alone versus diffusion 
with convection. 
 

Figure 6: Comparison of diffusive and diffusive-advective solutions. 
 
 

Concentration vs Depth

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Depth (ft)

13
25
38
50
72
13
25
38
50
72

At Times:

t=0

Without Advection:

With Advection:

Concentration vs Time

0

500

1000

1500

2000

2500

3000

Time (Hours)

5
10
15
20
5
10
15
20

At 4 Depths

No Advection:

With Advection:

t     /     x 0 2 4 6 8 10 12 14 16 18 20
0 0 0 0 0 0 0 0 0 0 0 0
1 5000 0 0 0 0 0 0 0 0 0 0
2 5000 375 0 0 0 0 0 0 0 0 0
3 5000 693.75 28.125 0 0 0 0 0 0 0 0
4 5000 966.7969 75.9375 2.109375 0 0 0 0 0 0 0
5 5000 1202.473 137.2148 7.488281 0.158203 0 0 0 0 0 0
6 5000 1407.393 207.3797 16.66802 0.696094 0.011865 0 0 0 0 0
7 5000 1586.837 283.0773 29.7735 1.842671 0.062292 0.00089 0 0 0 0
8 5000 1745.043 361.8615 46.67647 3.803955 0.191216 0.005428 6.67E-05 0 0 0
9 5000 1885.426 441.9612 67.09991 6.748438 0.448237 0.01896 0.000464 5.01E-06 0 0

10 5000 2010.759 522.1065 90.68815 10.80228 0.888556 0.049769 0.001817 3.9E-05 3.75E-07 3.75E-07
11 5000 2123.303 601.399 117.0531 16.05019 1.569177 0.109081 0.00528 0.000169 3.28E-06 3.28E-06
12 5000 2224.913 679.2159 145.8038 22.53933 2.545746 0.210803 0.012682 0.00054 1.57E-05 1.57E-05
13 5000 2317.117 755.1373 176.5649 30.28465 3.870144 0.371065 0.02663 0.001412 5.51E-05 5.51E-05
14 5000 2401.185 828.8928 208.9868 39.27458 5.588801 0.607663 0.050571 0.003201 0.000157 0.000157
15 5000 2478.174 900.3217 242.7513 49.47656 7.74165 0.939467 0.088801 0.006526 0.000385 0.000385
16 5000 2548.972 969.3429 277.5735 60.84205 10.3616 1.385831 0.14643 0.012236 0.000846 0.000846
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19 5000 2731.15 1161.913 386.0214 101.2812 21.24774 3.602321 0.497474 0.05626 0.005609 0.005609
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In this scenario (with an advective coefficient of 0.01), we see that advection due 
to rainwater only slightly (by about 10%) speeds the downward movement of 
contaminant.   
 
 
Extensions 
 
Given the numerical (FTCS) procedure we used in the previous requirement, we 
are in a position to investigate other issues and complications.  Convergence 
issues are present in both our analytic and numerical solutions;  the analytic 
solution suffers from truncation errors when calculating from the infinite series 
solution, whereas the numerical solution suffers from the propagation of roundoff 
errors and possible instability (Figure 7).  
 
 
 

 
 

Figure 7: Truncation error (analytic solution) and instability (numerical solution).  
On the left is plotted the truncation error in the analytic solution vs. number of 
terms retained in the infinite sum.  On the upper right is the numerical solution of 
Eqn 1 at a given depth as a function of time;  note the apparently unbounded 
temporal error of the unstable solution.  At lower right is the numerical solution of 
Eqn 1 at a given time as a function of depth;  note that although the function 
obeys the boundary conditions, we have oscillations (reaching nonphysical 
negative values for the concentration) that indicate spatial instability. 
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Other complications can also be investigated numerically, such as the effect of 
nonhomogeneous ground porosity (turning the equation into a variable 
coefficient PDE), the effect of boundaries in a small-area spill, the breakdown of 
contaminant over time due to chemical reactions, and the effect of slowing or 
stopping the leak earlier before cleanup can begin (introducing a time dependent 
boundary condition). 
 
The finite differences and the spreadsheet can be used as above to investigate 
the introductory combined diffusion-advection scenario.  This leads naturally into 
more realistic, messier groundwater flow problems and more sophisticated 
numerical codes that are typically used in later hydrogeology and environmental 
engineering courses. 
 
 
 
Exercises 
 
1.  Look up Darcy’s law (found in most environmental engineering texts, such as 
references [1] or [2]).  Describe how this law can extend the ideas of this project 
to more general advection problems in atmospheric, reservoir, and water table 
modeling. 
 
2.  In our separation of variables solution for the pure diffusion scenario above, 
compare the ratio of the first and second terms of the sum when t=0, t=10, t=20, 
t=30.  Repeat for the ratio of the second and third terms.  What is the trend?  
What does this imply about the long term solutions to the diffusion equation? 
 
3.  Our separation of variables solution for the pure diffusion scenario expressed 
the contaminant concentration as a function of depth and time.  Instead of 
plotting curves at constant depth and time, we could instead just plot this 
equation as a surface;  engineers call this a response surface.  Describe how we 
could use the response surface to graphically generate the curves of Figure 4. 
 
4.  You are the facility engineer in Berlin.  The city of Dresden calls and asks 
your assistance in making clean up estimates for an old (now unoccupied) 
Soviet tank company motor pool.  The ground has been saturated with POL, and 
the city government wants to excavate the contaminated soil and replace it with 
clean fill in order to build low cost housing on the site.  The tank company 
occupied the site for 35 years, and appears to have routinely dumped waste 
POL during the entire period.  Given that the average local diffusivity of the soil 
is 1.75 m2/yr, to what depth will the soil need to be excavated?  
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5.  Use the numerical method developed above to rework the pure diffusion 
scenario.  Compare the results numerically (at a few specific points and times) 
and graphically (at a few times and a few depths).  What is the error?  How does 
the difference change when you take more terms in your infinite sum?  How does 
the difference change when you us smaller intervals?  Which method do you 
think is more accurate?  Which is faster?  Which is more adaptable to harder 
problems? 
 
6.  Starting with our PDE model for diffusion with advection, add a term that 
might reasonably account for the chemical breakdown of contaminant over time.  
Solve your new model numerically.  How does your new term affect the solution? 
 
7.  Look up flow nets and potential flow (found in most environmental 
engineering or fluids mechanics texts, such as references [1] and [2]).  Describe 
how these extend the ideas of this project to creeping flows in porous soil. 
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